

Available online at www.sciencedirect.com

Radiation Measurements

Radiation Measurements 42 (2007) 1561-1572

www.elsevier.com/locate/radmeas

Mapping terrestrial γ -dose rate in Europe based on routine monitoring data

T. Szegvary^a, F. Conen^a, U. Stöhlker^{b,*}, G. Dubois^c, P. Bossew^c, G. de Vries^c

^aDepartment of Environmental Sciences, Institute of Environmental Geosciences, University of Basel, Basel, Switzerland ^bBundesamt für Strahlenschutz, Freiburg, Germany

^cEuropean Commission, Joint Research Centre (JRC), Institute of Environment and Sustainability (IES), Ispra, Italy

Received 25 June 2007; received in revised form 3 September 2007; accepted 4 September 2007

Abstract

After the nuclear reactor accident in Chernobyl in 1986, most countries of the European Union (EU) established monitoring networks measuring outdoor γ -dose rates for early warning. The data are composite values γ -dose rate due to terrestrial, cosmic and artificial radiation sources, and in most cases also include some instrument background. While EURDEP is mainly designed for exchanging and stocking data during radiological emergencies, the data it is storing in its database may potentially contain valuable information about spatio-temporal variations of the ²²²Rn source term which can be used for the validation of atmospheric transport models and other atmospheric tracer applications. The use of γ -dose rates as a proxy for outdoor radon concentrations is indeed possible if one can extract the terrestrial γ -dose rate contribution from the values reported in EURDEP.

It is the purpose of this paper to discuss the preparation of the terrestrial γ -dose rates using EURDEP data and to present seasonal maps of terrestrial γ -dose rates in Europe. Such maps could be used for the preparation of ²²²Rn source term which can be used for the validation of atmospheric transport models as well as for exploring variations in soil moisture content, an important parameter in flood prediction. These applications are the focus of the ongoing studies, but beyond the scope of this paper. In this paper, we show how the terrestrial γ -dose rate can be derived from the emergency monitoring data and two seasonal maps of γ -dose rates at the European scale are produced using geostatistics. © 2007 Elsevier Ltd. All rights reserved.

Keywords: y-Dose rate; Radon; Monitoring networks; EURDEP; European map

1. Introduction

A lot of effort and financial input are usually required to gather the necessary data for modelling any parameter of scientific interest on a large scale such as Europe. Using existing networks providing data about a variable that is a proxy of a desired parameter can therefore be an interesting solution. For investigating spatio-temporal variations of the ²²²Rn source term for the validation of atmospheric transport models and other atmospheric tracer applications—a variable that is measured only at few locations—other sources of data were explored, among which total γ -dose rates that are monitored intensively in most European countries.

In 1986, after the Chernobyl accident, most European countries extended their γ -dose rate monitoring networks or

* Corresponding author. Tel.: +49(0)7613866714.

E-mail address: ustoehlker@bfs.de (U. Stöhlker).

established new ones. The data they collect are transmitted regularly in the situation of routine to the EUropean Radiological Data Exchange Platform (EURDEP, http://eurdep.jrc.it). This activity initiated by the European Commission is designed to store and exchange data from the national networks in situations of routine monitoring and in emergencies (with higher temporal resolution). Because of the continuous monitoring, temporal variability in terrestrial γ -dose rates can be observed and potentially used for scientific purposes. Terrestrial γ -dose rates are indeed closely related to factors affecting ²²²Rn fluxes (Schery et al., 1989) and could enable the large-scale modelling of the ²²²Rn source term (Szegvary et al., 2007). This term, in combination with observations of atmospheric ²²²Rn concentrations, should allow the evaluation and calibration of climate models simulating transport, transformation and removal processes of gases and aerosols. Used in inverse mode, these models can further provide information on location, extent and strength of sources and sinks of greenhouse gases based on the

measurement of changes in their atmospheric concentrations. Currently, the effective use of ²²²Rn in this context is limited by the accuracy of the ²²²Rn source term (WMO, 2004). Changes in the terrestrial γ -dose rates also indicate changes in soil moisture (Jones and Carroll, 1983), a central parameter in streamflow forecasting. Aubert et al. (2003) showed the potential of sequential assimilation of soil moisture and streamflow data in forecasting of flood events. The currently central limitation to the operational implementation is the availability of soil moisture data. This information might be derived at a sufficiently high temporal resolution and with little effort from the existing radiological emergency monitoring network. To gain more information about the terrestrial γ -dose rate to be used as a proxy for such applications, the objectives of this study were twofold:

- (I) to extract the natural terrestrial component from reported data on total γ-dose rate, considering all factors of different networks and
- (II) to interpolate the data for generating seasonal maps of the natural terrestrial dose rates at the European level.

2. The European radiological data exchange platform (EURDEP)

The EURDEP network is currently used by 30 European countries for the continuous exchange of data from their national radiological monitoring networks while several other European countries applied for participation and are in the process of interfacing to the network. During routine operation, monitoring data is made available by the participating organizations at least once a day. During an emergency, data have to be made available at least once every 2 h. In practice, more and more organizations make data available on an hourly basis as a routine. The status of June 2007 is that 13 countries make their data available during routine once per hour, four countries each 2 h and the remaining countries between 3 and 24 h. As a result of this network of networks, measurements of more than 4000 monitoring stations (Table 1) are made accessible to the competent authorities in almost real-time and-with some restrictions and delays-to the public.

The total number of measurements listed in Table 1 is not always closely matching the theoretical number of measurements

Table 1			
Overview of the	y-dose stations	that contributed to	b EURDEP in 2006

Country	No. of stations	No. of stations/2500 km ²	Total no. of measurements	Measuring period	Transmission interval during routine (h)
Belgium	130	10.65	1 086 046	1 h	1
Bulgaria	27	0.61	9 228	10 min	24
Croatia	12	0.53	166 925	30 min	6
Czech Republic	54	1.71	427 079	1 h	1
Denmark	10	0.58	79 643	1 h	2
Estonia	10	0.55	83 106	1 h	3
Finland	256	1.90	1 414 803	1 h	1
France	168	0.77	9 821 873	10 min	12
Germany	2068	14.48	780 992	24 h	24
Great Britain	91	0.93	751 413	1 h	1
Greece	24	0.45	183 171	1 h	24
Hungary	86	2.31	283 024	1 h	1
Iceland	1	0.02	33 713	15 min	2
Ireland	14	0.50	112 943	1 h	1
Italy	38	0.32	206 043	1 h	24
Latvia	15	0.58	110 901	1 h	2
Lithuania	11	0.42	45 104	1 h	1
Luxembourg	17	16.43	131 420	1 h	1
Netherlands	165	9.93	7 073 751	10 min	1
Norway	43	0.33	111 743	10 min	1
Poland	13	0.10	106 830	1 h	2
Portugal	13	0.35	80 055	20 min	24
Romania	37	0.39	13 120	24 h	24
Russia	294	0.04	41 788	10 min	24
Slovakia	23	1.18	33 997	1 h	1
Slovenia	37	4.56	199 335	30 min	1
Spain	32	0.16	1 285 935	10 min	24
Sweden	35	0.19	862 605	15 min	24
Switzerland	55	3.33	153 266	1 h	1
Average	137	2.82	861 876	3 h	9
Total	4151		25 856 266		

Download English Version:

https://daneshyari.com/en/article/1882014

Download Persian Version:

https://daneshyari.com/article/1882014

Daneshyari.com