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H I G H L I G H T S

� Electromagnetic and magnetostatic wiggler IFEL acceleration scheme is presented.
� Electromagnetic wiggler has higher accelerating gradient at lower saturation level.
� Electromagnetic wiggler has more tolerance for angle than magnetostatic wiggler.
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a b s t r a c t

In this paper, we discuss the effects of misaligned electron beam on an inverse free electron laser with
both an electromagnetic wave wiggler and magnetostatic wiggler acceleration scheme. It is shown
analytically that electromagnetic wiggler IFEL energy gain distance is substantially smaller when
compared to the standard IFEL i.e. with a magnetostatic wiggler. The analysis further explains a better
tolerance of the electromagnetic wiggler IFEL with respect to the misaligned electron beam in comparison
to a magnetostatic wiggler IFEL scheme.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There exists an interest in inverse free electron lasers for laser
accelerations with higher accelerating gradients. In an IFEL accel-
erator, there is a transfer of energy between the laser and the
electron beam in presence of an undulator magnetic field. In IFEL,
relativistic electrons are moving through an undulator magnetic
field feels a small transverse velocity in a direction parallel to the
electric field vector of a co-propagating electromagnetic wave and
helps energy exchange between the electron and the wave. IFELs
have been demonstrated for accelerating electrons to the energies
of the order of GeV and do not suffer the limitation of the
conventional microwave accelerating structure. In the 1970s
(Palmer, 1972), the basic principle of IFEL was proposed with a
helical wiggler. Later (Courant et al., 1985) it was shown that the
IFEL can accelerate electrons to few hundred GeV with an average
acceleration rate of the order of 200 MeV/m and the effects of
synchrotron radiation losses were explained for both linear and
helical magnetostatic undulator magnetic field.

The IFEL with a square wave wiggler scheme (Parsa and Pato, 1997)
was proposed where it was shown to exhibit an energy gain of two in
comparison to the conventional IFEL with sinusoidal field wiggler.
Conceptual design of a 300 GeV accelerator based on the IFEL process
was represented (Pellegrini et al., 1983). The study of IFEL on potential
mode of electron acceleration has been pursued by Brookhaven
National Laboratory (Fisher et al., 1994). The theory of IFEL beat wave
accelerator was proposed. In this scheme (Bobin 1985; Cai and
Bhattacharjee, 1990) the presence of plasma, under suitable conditions
enhance the accelerating electric field in the IFEL. In the scheme, the
beat wave generated by a laser and an undulator couple to plasma
oscillation generated by the electron beam in the plasma. A chirped
pulse IFEL vacuum accelerator for high gradient laser acceleration
in vacuum was proposed (Hartmann et al.). An undulator with non
adiabatic tapering for IFEL was reported (Varfolomeev et al., 2002).
A taper in both the magnetic field and the undulator period are
reported to provide synchronicity of the laser beam interactionwith
a captured electron bunch along the whole undulator.

In recent years there exists interest in IFEL using compact
helical undulator (Musumeci et al., 2005; Duris et al., 2011;
Anderson et al., 2011; Tremainc et al., 2011). The reported work
on two-stage optical IFEL gives a new promise (Dunning et al.,
2013) for high gradient IFELs. Electron acceleration in the IFEL with
a helical wiggler in the presence of ion-channel guiding magnetic
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field has been investigated. The effects of tapering wiggler
amplitude and axial magnetic field are calculated for the electron
acceleration (Khazaeinezhad and Esmaeilzadeh, 2012).

In this paper we reconsider the theory of IFEL with an electro-
magnetic wiggler (Lu et al., 1992; Esmaeilzadeh and Taghavi, 2010;
Freund et al., 1986; Olumi et al., 2011; Esmaeilzadeh et al., 2006).
The wiggler is a circularly polarized electromagnetic wiggler. The
study is aimed at comparing the electromagnetic wiggler IFEL with
IFEL with a helical magnetostatic wiggler field. It is shown that the
electromagnetic wiggler IFEL provides smaller energy gain distance
of the electron as compared to a helical magnetostatic wiggler.

2. Theory of IFEL with imperfect helical trajectory

We consider an electromagnetic wiggler who‘s magnetic and
electric fields are expressed as (Lu et al., 1992; Esmaeilzadeh and
Taghavi, 2010; Freund et al., 1986; Olumi et al., 2011; Esmaeilzadeh
et al., 2006)

Bwðz; tÞ ¼ Bw cos ðkwzþωwtÞ; sin ðkwzþωwtÞ;0
� �

Ewðz; tÞ ¼ωwBw

kwc
sin ðkwzþωwtÞ; cos ðkwzþωwtÞ;0

� � ð1Þ

where Bw is the peak magnetic field of the wiggler of the
wavelength λw ¼ 2π=kw. kw and ωw are the wave number and the
frequency of the electromagnetic wiggler, respectively. The elec-
tromagnetic wave propagating along the wiggler is described by,

E
!

L ¼ E0 sin ψ ; E0 cos ψ ;0½ �
B
!

L ¼ �E0 cos ψ ; E0 sin ψ ;0½ � ð2Þ
where ψ ¼ nðkz�ωtÞ and k¼ 2π=λ, λ is the wavelength of the laser.
The equation describing the motion of the electrons in the IFEL can
be derived from the Lorentz equation of motion,

dð β!Þ
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¼ e
mecγ

ð E!Lþ E
!

wÞþ β
!� B

!
Lþ B

!
w

� �h i
ð3Þ

In components Eq. (3) reads,

d β
!

x
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ð1�βzÞ sin ψ� eBw

mecγ
ωw

kwc
þβz
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d β
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kwc
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The electron velocity is given by,

βx ¼
K
γ
cos ðkwzþωwtÞþKL

γ
cos ψ ð5aÞ

βy ¼
K
γ
sin ðkwzþωwtÞ�KL

γ
sin ψ ð5bÞ

where the wiggler and electromagnetic wave parameter is defined
as

K ¼ eBwλw
2πmec2

; KL ¼
1
n

eE0λ
2πmec2

let kwvzþωw ¼Ω then the electron velocity and trajectories are

βx ¼
K
γ
cos ΩtþKL

γ
cos ψ ð6aÞ

βy ¼
K
γ
sin Ωt�KL

γ
sin ψ ð6bÞ

x¼ c
K
γΩ

sin Ωtþc
KL

γðβz�1Þω sin ψ ð7aÞ

y¼ �c
K
γΩ

cos Ωtþc
KL

γðβz�1Þω cos ψ ð7bÞ

For a misaligned electron beam (Colson et al., 1985) we write
Eqs. (6a) and (6b) as

βx ¼
K
γ
cos ΩtþKL

γ
cos ψþθ ð8aÞ

βy ¼
K
γ
sin Ωt�KL

γ
sin ψ ð8bÞ

Substituting βx and βy from Eqs. (8a) and (8b) in the relation
β2 ¼ 1�ð1=γ2Þ we get the longitudinal velocity as

βz ¼ βn�Kθ
γ

cos ðΩtÞ ð9Þ

where

βn ¼ 1� 1
2γ2

1þK2þγ2θ2
h i

The longitudinal co-ordinate can be evaluated by integrating
the above expression to get

z¼ βnctþc
Kθ
γΩ

sin ðΩtÞ ð10Þ

The electron longitudinal co-ordinate can be expressed from
Eq. (10) as z¼ zþΔz, where z¼ βnctwith

Δz¼ c
Kθ
γΩ

sin Ωt ð11Þ

The change in electron energy is given by

dγ
dt

¼ e
mec

E
!

: β
! ð12Þ

Using Eqs. (8a),(8b) and (11), the change in electron energy is
given by

dγ
dz

¼ A
K
γ
sin ðψþΩtÞþθ sin ðψÞ

� 	
ð13Þ

where

A¼ eE0
mec2

when Eq. (12) is averaged over a discrete number of wiggler
periods, the fast oscillating term ψ become very small or zero. The
phase term can be written in a simplified form as

ψþΩt ¼ nξþnχ sin Ωt�ðn�1ÞΩt ð14Þ
where

ξ¼ kz�ωtþΩt; χ ¼ c
Kkθ
γΩ

ð15Þ

Using Eqs. (14) and (13) we get,

dγ
dz

¼ AK
2iγ

exp ifnξ�ðn�1ÞΩtþnχ sin Ωtgð Þ
�exp � ifnξ�ðn�1ÞΩtþnχ sin Ωtgð Þ

" #
ð16Þ

where we have used the identity

expf� inχ sin Ωtg ¼∑
m
JmðnχÞexpð� imΩtÞ

JmðxÞ is the cylindrical Bessel function. Eq. (16) is further
simplified to

dγ
dz

¼ AK
γ
∑
n
Jn�1ðnχÞ sin ðnξÞ ð17Þ

Using Eq. (15) we get change in phase as

dξ
dz

¼Ω

c
� k
2γ2

1þK2
h i

ð18Þ
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