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a b s t r a c t

In this study, we consider the optimal portfolio selection problem with liquidity limits. A port-

folio selection model is proposed in which the risky asset price is driven by the process based

on non-extensive statistical mechanics instead of the classic Wiener process. Using dynamic

programming and Lagrange multiplier methods, we obtain the optimal policy and value func-

tion. Moreover, the numerical results indicate that this model is considerably different from

the model based on the classic Wiener process, the optimal strategy is affected by the non-

extensive parameter q, the increase in the investment in the risky asset is faster at a larger

parameter q and the increase in wealth is similar.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The portfolio selection problem is an important and at-

tractive issue in finance. Markowitz [1] was the first to con-

sider the optimal portfolio selection problem and presented

the mean-variance approach. This method is a single-period

model that makes a one-off decision at the beginning of

the period and holds on until the end of the period. After-

wards, Merton [2] extended this single-period model to a

continuous-time model by using utility functions and the

stochastic control theory.

In real financial markets, to improve risk management,

agents often impose some restrictions on their trading,

of which the liquidity limit has received much attention

from researchers. For example, Xu and Shreve [3] studied
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a continuous-time portfolio selection problem with a short-

selling constraint on a finite horizon and obtained the

solution by solving its dual problem. Fu and Lavassani [4] ob-

tained the explicit solutions of the dynamic mean-variance

optimal portfolio selection problem with borrowing limits

using the stochastic piecewise linear-quadratic control the-

ory. Vila and Zariphopouiou [5] studied an optimal consump-

tion and portfolio selection problem with the borrowing

restriction using the stochastic dynamic programming. Luo

and Wang [6] studied the portfolio selection problem that

occurs when tracking the expected wealth process with

liquidity limits and obtained the corresponding Hamilton-

Jacobi-Bellman equation with liquidity constraints. Tepla [7]

considered an optimal intertemporal portfolio problem with

a borrowing limit and short-sale restrictions and introduced

an algorithm for its calculation.

However, the above portfolio selection problems were

modeled in the framework in which the prices of risky as-

sets were driven by the classical Brownian motions. We know
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that this hypothesis implies that the return distributions of

risky assets are normal. However, several empirical results

have shown that the returns of financial quantities have the

characteristics of fat-tails and aiguilles and are not normal

[8–12].

In 1988, Tsallis [13] proposed the non-extensive ther-

mostatistics, which is a generalization of the classical

Boltzmann-Gibbs statistics. This non-extensive statistical

mechanics was rapidly applied to various fields [14–17].

It has also increasingly drawn attention from finance re-

searchers. For example, Queirós [18] studied characteristics

of the return distributions for the Dow Jones and NYSE and

found that the q-Gaussian distributions derived by the non-

extensive statistics mechanics can fit the return distributions

in different time scales. Borland [19,20] proposed several op-

tion pricing models under the framework of non-extensive

statistics mechanics, obtaining some closed-form solutions;

the models can predict option prices better than the classic

Black-Scholes pricing equations. Namaki and Lai et al. [21]

applied the Tsallis non-extensive statistics mechanics to de-

tect crises of the financial markets. Stavroyiannis and Makris

[22] applied the non-extensive statistics methodology to cal-

culate the Value-at-Risk of financial time series and obtained

closed-form solutions. A number of studies have shown that

the non-extensive statistics methodology has been applied

well to the financial field.

In this paper, we establish an optimal portfolio selection

model under the framework of the non-extensive statistical

mechanics and impose liquidity constraints on it.

This article is organized as follows. In Section 2, we

model the price process of the risky assets by using Tsal-

lis non-extensive statistical mechanics. The model implicates

that the return distributions are q-Gaussian distributions

with fat-tail characteristics rather than Gaussian ones. In

Section 3, we propose an optimal portfolio selection model,

which minimizes the cumulate variance between the wealth

process and the expected wealth process and is subject to a

liquidity constraint. In Section 4, we apply the dynamic pro-

gramming methodology and Lagrange multiplier to solve our

optimal portfolio selection problem. In Section 5, we present

and discuss the numerical results. In the final section, we

summarize the paper.

2. The risky asset price process

Recently, the empirical results have shown that the dis-

tributions of stock returns have significant fat-tail charac-

teristics and are not normal distributions. To better fit the

fat-tail characteristics of the stock return distribution, we use

a stock return fluctuations model, which can be derived from

the stochastic processes under the non-extensive statistical

framework, to replace the standard Black-Scholes model (see

[19,20]). The model is given by

dS(t) = S(t)(μdt + σd�) (1)

where

d�(t) = P(�, t)
1−q

2 dW(t) (2)

W(t) is a Wiener process. P(�) is the Tsallis distribution

P(�, t) = 1

z(t)
(1 − β(t)(1 − q)�2)

1

1 − q
(3)

with

z(t) = ((2 − q)(3 − q)ct)
1

3−q (4)

β(t) = c
1−q
3−q ((2 − q)(3 − q)t)

−2
3−q (5)

and

c = π

q − 1

�2( 1
q−1

− 1
2
)

�2( 1
q−1

)
(6)

In the limit q → 1, the Black-Scholes model is recovered.

When 1 < q < 5/3, the distribution exhibits power law tails

and has finite variance, which covers the values of empirical

returns (see [19]). Hence, this model generalizes the standard

Black-Scholes model and can more accurately fit the move-

ments of asset price.

3. Market model and liquidity constraint

Suppose there is a financial market that consists of n + 1

assets. One is a risk-free bond whose price process S0(t) sat-

isfies the following ordinary differential equation{
dS0(t) = rS0(t)dt, t ∈ [0, T ]

S0(0) = s0 > 0
(7)

In this equation, the constant r is a positive risk-free rate.

The other n assets are stocks whose price processes satisfy

the model described in the second section, which is written

as the following stochastic differential equation:⎧⎨
⎩

dSi(t) = Si(t)(μidt + ∑n
j=1 σi, jd� j(t)),

i = 1, 2, . . . , n; t ∈ [0, T ]

Si(0) = si > 0

(8)

where

d� j(t) = P(� j, t)
1−q j

2 dWj(t) (9)

Wj(t), j = 1, 2, . . . , n is a Wiener process and P(�j, t) is

the Tsallis distribution of index qj described in the second

section.

Let μ = (μ1,μ2, . . . ,μn)T be an Rn valued appre-

ciation rate of returns, σ = {σi, j, i, j = 1, 2, . . . , n} be a

n × n-matrix valued volatility rate of returns, and π(t) =
(π1(t), π2(t), . . . , πn(t))T ∈ L2

F ([0, T ]; Rn) be a control pro-

cess. The component π i(t) is the proportion of the investor’s

wealth invested in the ith risky asset (i = 1, 2, . . . , n) at

time t. That is, at time t, the agent’s wealth can be given by

Xπ(t) =
n∑

i=0

πi(t)Si(t), t ≥ 0 (10)

where

π0(t) = 1 −
n∑

i=1

πi(t)

Then, the wealth process {Xπ (t)} satisfies the following

stochastic differential equation:{
dXπ(t) = [rX(t) + (μ − r)Tπ(t)]dt + π(t)Tσd�(t)
X(0) = x0 > 0

(11)
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