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a b s t r a c t

The problem of determining the presence and direction of coupling between experimentally

observed time series is of immediate interest in many relevant areas of knowledge. One of

the approaches to its solution is the method of nonlinear Granger causality. The algorithm is

based on the construction of predictive models and its effectiveness depends on the proper

selection of model parameters.

The most important of them for signals with a characteristic time scale fluctuations are the

time lag used in the reconstruction of the state vector, and the range forecast. In this paper, we

propose two criteria for evaluating performance of the method of nonlinear Granger causality,

which allows one to select the lag and range forecast and achieves the best sensitivity and

specificity. The sensitivity is determined by range of weakness the method can detect and

specificity means the ability to avoid false positive results. Because of the proposed criteria

on the example of several unidirectionally coupled reference systems were received practical

advice on the selection of the following model parameters: lag and range forecast.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Detection of the presence and direction of interactions

between subsystems of complex systems from their exper-

imentally observed time series is an up-to-date problem,

which has applications in various fields of knowledge. A vari-

ety of methods were developed in order to solve this task, in-

cluding the cross-correlation function, coherence, phase syn-

chronisation index, information based measures [1,2], a par-

tial directed coherence [3] and approaches based on build-
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ing predictive models, which include the Granger causality

approach [4], and phase dynamics approach [5,6]. The main

idea of approaches Granger causality method, transfer en-

tropy and partial directed coherence is similar, and in some

cases they can be shown to be completely equal [7]. However

in general this is not the case [8].

The author developed Granger causality in relation to eco-

nomical studies, but now it is successfully applied, for exam-

ple, in neuroscience to identify the coupling between differ-

ent brain regions [9–14], in climatology—to predict the be-

haviour of the monsoon [15]. There are a number of studies,

where the Granger causality is used to indicate the evolution

of coupling in time [16–18].

Despite the transparency of the idea of the method, its

efficiency depends critically on the details of the implemen-

tation. For example, the special attention has to be paid to

effects of measurement noise [19–21].
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In this paper, we propose a new approach to choose the

method parameters for the case, when the measured time se-

ries have a single main time scale which can be detected, for

example, by using auto-correlation function. Such systems

are quite common in nature, e.g. rhythmic changes in solar

activity (sunspot number), oscillatory changes of brain po-

tentials (for example, spike-wave discharges at the absence

epilepsy, or θ-rhythm during the sleep), the signals of the

heart (the main heart rate at the cardiogram) etc. The idea

of the approach is that the parameters of the model, with the

meaning of time: the time lag l, used for the reconstruction of

the state vector [22–24], and the prediction time τ should be

associated with the characteristic scale of the observed os-

cillations. Some research in this direction has already been

held: in [25] it was shown that the lack of sample rate and,

therefore, too large values of τ and l lead to systematic, fatal

errors in determining the direction of coupling, primarily to

the appearance of false positive conclusions. Similarly, in the

paper [26] it was shown that mistakes can be caused by too

small values of the prediction time, therefore it was proposed

to use the value of τ equal to a quarter of the characteristic

period of the observed oscillations.

In general, however, the question of the optimal choice

of τ and l is still open, even for individual narrow classes

of signals, including the class considered in this paper, since

the previously used numerical criteria took into account only

one parameter of the Granger causality method: either pre-

diction time, as in [26], or sampling interval, as in [25], or

a kind of approximation functions, as in [27]. Therefore, in

this paper we propose two new numerical criteria character-

ising the performance of the method according to τ and l and

test them in a number of nonlinear coupled reference sys-

tems. The application of these criteria helped to make gen-

eral conclusions about the best and worst values of τ and l

for the models used in the method of Granger causality to

determine the coupling of signals having a distinct time scale

(oscillation period). The degree of efficiency of the method is

shown according to the level of nonlinearity of the original

data, which is determined by the highest Lyapunov exponent

and the effective coefficient of phase diffusion.

In the original study [4] linear approximating functions

were used, but now nonlinear functions of different type:

polynomials [27,28], radial basis functions [29] and kernel

Granger causality [30] can be used instead. The other way to

solve the problem of approximation function choice is to use

local linear models, as it was proposed in [31]. We examined

the model with polynomial nonlinearity of the general form

and the local linear models, since they are most frequently

used in practice due to simplicity and generality. In this re-

gard, we chose the small values of both the model dimension

and polynomial order. So, the models do not require many co-

efficients and can be reliably estimated from the short time

series. This helps to make the results useful from a practical

point of view, when the amount of data is very limited due

to the features of the experiment, nonstationarity, or a desire

for acceptable temporal resolution, when constructing mod-

els in a time window, as is done, for example, in [14,17,32].

2. Granger causality

Let us remind the key point of Granger causality. Suppos-

ing that we have time series of two systems—a series {xn}N
n=1

from the system X and a series {yn}N
n=1 from the system Y,

where n = 1, 2, . . . , N is discrete time, N is the length of the

series. It requires to determine whether the system Y drives

the system X or not by analysing realisations {xn}N
n=1

and

{yn}N
n=1. To solve this problem an individual model (dynami-

cal system) is constructed on the first step:

x′
n+τ = f (xn, xn−l, . . . , xn−(Ds−1)l, cs), (1)

where x′
n is a predicted value at the time moment n and

it may differ from the measured value xn, f is an approxi-

mating function (if it is nonlinear, method is called a non-

linear Granger causality), l—lag of the model, i.e. the num-

ber of discrete time points between the two subsequent val-

ues from {xn}N
n=1

, forming Ds-dimensional state vector of the

model xn(xn, xn−1, . . . , xn−(Ds−1)l , τ is the prediction time—

the distance in time between the predicted point and the

closest point of the state vector, Ds—dimension of the indi-

vidual model (the number of points of the time series which

form the state vector, which is being reconstructed by the

time delay method [23,24]), cs—unknown vector of coeffi-

cients which is chosen using least squares fit to minimise the

standard error of approximation (1):

ε2
s = 1

N

N∑
n=τ+(Ds−1)l+1

(x′
n − xn)

2 (2)

The next step is to build the joint model, in which Da

members from the series {yn}N
n=1 are used besides the data

of the series {xn}N
n=1

:

x′′
n+τ = g(xn, xn−l, . . . , xn−(Ds−1)l, yn, yn−l, . . . , yn−(Da−1)l, c j),

(3)

where x′′
n is a model predicted value, cj—joint model coeffi-

cients. The standard prediction error of the joint model sim-

ilarly to (2) has the form:

ε2
j = 1

N

N∑
n=τ+( max (Ds,Da)−1)l+1

(x′′
n − xn)

2. (4)

If ε2
j

< ε2
S
, the system Y is considered to drive the system

X (systems are coupled). Prediction improvement index is typ-

ically used as a measure of coupling:

PI = 1 −
ε2

j

ε2
S

. (5)

If PI = 0 (considering the signal {yn}N
n=1

did not help in pre-

dicting {xn}N
n=1

), it is considered that Y has no effect on X. If

the PI → 1 (considering the signal {yn}N
n=1 has significantly

improved the prediction of {xn}N
n=1

), it should be regarded as

Y drives X.

Practice shows that the choice of the parameters of the

described procedure (lag l, prediction time τ , dimensions Ds

and Da, type of nonlinear functions f and g) significantly de-

termines the efficiency of the method. For example, the use of

too small or too large τ may cause a large number of errors:

positive conclusions about the coupling that in fact does not

exist [25,26]. Neglecting the nonlinearity in the modelling

often leads to a situation, when really existing links are not

detected [27,33]. The problem seems to be major since most

coupling analysis techniques are very model-dependent [8].
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