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a b s t r a c t

The aim of this paper is to deduce a discrete version of the fractional Laplacian in matrix form

defined on the 1D periodic (cyclically closed) linear chain of finite length. We obtain explicit

expressions for this fractional Laplacian matrix and deduce also its periodic continuum limit

kernel. The continuum limit kernel gives an exact expression for the fractional Laplacian (Riesz

fractional derivative) on the finite periodic string. In this approach we introduce two material

parameters, the particle mass μ and a frequency �α . The requirement of finiteness of the the

total mass and total elastic energy in the continuum limit (lattice constant h → 0) leads to

scaling relations for the two parameters, namely μ ∼ h and �2
α ∼ h−α . The present approach

can be generalized to define lattice fractional calculus on periodic lattices in full analogy to

the usual ‘continuous’ fractional calculus.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many phenomena in nature are characterized by particle

trajectories with irregular non-differentiable ‘complex’ char-

acteristics which often appear to be ‘similar’ if one changes

the scale. This property of self-similarity has as consequence

that these phenomena cannot be described by integer or-

der partial differential equations. However, it has turned out

that application of certain nonlocal ‘fractional’ operators on

these trajectories may be well defined and hence these phe-

nomena can be described by fractional partial differential
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equations, i.e. by differential equations of non-integer orders.

This inevitable change of mathematical tools to describe such

‘anomalous’ phenomena comes along with need of change

of the geometrical description of these ‘fractal’ trajecto-

ries. The traditional geometrical description of integer order

dimensions has to be given up and generalized to a descrip-

tion with non-integer order ‘fractal’ dimensions. The need of

a ‘fractionalized’ description can occur with respect to space

and time.

The notion of fractal geometry introduced by Mandelbrot

[4,8] taught us that the classical idealizations for the trajec-

tories of motions by smooth lines are rather rarely justified

in natural structures. Instead nature chooses irregular non-

differentiable self-similar curves with a fractal non-integer

dimension. It is today believed that fractional calculus in his

numerous variants is the appropriate mathematical tool to

analyze such irregular motions.
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Once a power law occurs in Fourier space, the Fourier

transformed quantity is described naturally by a fractional

operator. There is recently a vast literature emerging to de-

velop appropriate approaches to describe fractal phenom-

ena in various physical contexts. 1D linear chains of infinite

length leading to fractal dispersion relations were analyzed

in [12,23]. One direction of analysis suggests to model fractal

domains embedded in the physical space by vector analysis

developed for spaces of non-integer dimensions [25,26], and

see also the references therein. We emphasize that despite of

the wide field of possible fractal applications of the approach

to be developed, “fractals” are not the subject of the present

paper. The present paper is devoted to develop exact repre-

sentations of fractional lattice Laplacian defined on finite pe-

riodic linear chains and to the analysis of its continuum lim-

its. An overview on the relations between fractional calculus

and fractal curves such as the Weierstrass–Mandelbrot func-

tion has been presented by West [29].

Power law behavior which is naturally described by

fractional calculus occurs in various completely different

contexts such as anomalous and turbulent diffusion, critical

phenomena such as phase transitions, biological systems,

the human economy, and last but not least the present crisis

of the financial system teaches us that complex systems

such as the world economy does not obey Gaussian statistics

where extreme events are extremely seldom, however they

are governed by stable heavy tailed Lévy distributions where

extreme events are in the heavy tail still rare, but they are

anyway much more likely as in Gaussian cases [7].

There is a great variety of definitions for fractional inte-

grals and derivatives depending on the function spaces in

which they are defined, including Riemann, Liouville, Caputo,

Grünwald–Letnikov, Marchaud, Weyl, Riesz, Feller, among

others, see e.g. [2,3,6,9–11,18,20–22,24,29].

In the review article of Metzler and Klafter [9] the random

walk concept is applied in order to derive fractional equa-

tions of diffusion, diffusion–advection, and Fokker–Planck

type. In that article a broad overview of applications of

fractional calculus on processes of anomalous diffusion is

presented. In the paper of Metzler et al. [11] a fractional

generalization of Fokker–Planck equation is derived by ana-

lyzing the jump rates of a generalized master equation. It can

be said that the fractional approach is inevitable to describe

such anomalous phenomena. In another recent review arti-

cle by the same authors [10] various ‘anomalous’ processes

are discussed which are governed by fractional evolution

equations, and a broad collection of systems is presented

which exhibit anomalous processes such as Lévy walks and

-flights with long-range correlations. In that article both,

theoretical and experimental issues of anomalous transport

processes governed by fractional dynamics are analyzed.

Whereas continuum fractional calculus is well developed,

the lattice fractional calculus has rarely been considered. The

development of lattice fractional calculus has become an im-

portant issue due to a variety of newly emerging applications,

e.g. for the description of the dynamics on networks [19].

In two recent articles by Tarasov, fractional calculus on infi-

nite lattices has been introduced [27,28]. In [28] an analogue

of vector fractional calculus is suggested. In that paper long

range interparticle interaction kernels are proposed defin-

ing fractional partial derivatives on lattices with power law

Fourier transforms, similar to the kernels of continuum frac-

tional derivatives. The difference of that approach and those

to be introduced in the present paper is that we deduce from

‘fractional’ elastic potentials the fractional Laplacian matrix

on the finite cyclic chain. To this end we start with an elastic

potential generated by a quadratic form involving a power

law matrix function (below relation (8)) of the discrete Born

von Karman Laplacian matrix which is defined by (7). The

fractional lattice approach suggested in [27] holds on infinite

bounded lattices. The approach introduced in the present pa-

per includes both, infinite and finite cyclic chains.

The present paper aims to introduce a definition of frac-

tional Laplacian which is analogue to the continuous version,

being defined as a non-integer power of a “Laplacian”, where

the Laplacian is the symmetric centered second difference

operator (Born-von Karman Laplacian matrix) being well de-

fined on the periodic finite chain. A fractional generalization

of the Laplacian defined on circulant networks have been an-

alyzed by Riascos and Mateos [19] (see also the references

therein). In that paper explicit results for the infinite cyclic

ring have been obtained which are consistent with those de-

duced in the present paper. The study of Laplacian matrices

generally is of importance in graph theory as it gives infor-

mation on topological properties of the network [19]. In this

context the fractional Laplacian matrix to be introduced is of

interest for the study of anomalous ‘fractional diffusion’ pro-

cesses taking place on the cyclic chain.

From an engineering point of view the analytical tools de-

veloped in the present paper can be of interest to improve

the existing description in turbulent diffusion. Such frac-

tional approaches could have impacts due to their capacity

to describe irregular, erratic and ‘turbulent’ phenomena, to

improve aerodynamics models and performances of aerody-

namic properties in aerospace and car production engineer-

ing. Since such erratic dynamic systems cannot be described

by conventional differential equations with spatial or tem-

poral derivatives of integer orders having smooth and con-

tinuous solution characteristics. The erratic dynamical char-

acteristics of ‘turbulence trajectories’ require to be described

by a another language, namely the fractional language since

fractional order derivatives of those trajectories are defined

whereas their integer order derivatives do not exist [30].

In the present paper we focus on the cases where the frac-

tional operators occur in the space domain, in the form of

a fractionally generalized Laplace operator −( − �̃)
α
2 with

positive power law index α > 0. In the continuum limit such

systems are characterized by asymptotic −kα-power law be-

havior in Fourier space. An example for a discrete model

which yields in the continuum limit the 1D infinite space

fractional Laplacian (Riesz fractional derivative)1 has been de-

veloped in recent years [12–14].

The present paper is organized as follows: first we define

the discrete version of the N × N-matrix of fractional Lapla-

cian on the infinite linear chain as a limiting case of a cycli-

cally closed (periodic) linear chain of identical N → ∞ parti-

cles. N indicates the number of identical particles of the pe-

riodic chain.

1 We use synonymously the terms “fractional Laplacian” and “Riesz frac-

tional derivative”.
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