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a b s t r a c t

The Okamura model equation of saline oscillator is refined into a non-autonomous ordinary

differential equation whose coefficients are related to physical parameters of the system. The

dependence of the oscillatory period and amplitude on remarkable physical parameters are

computed and compared to experimental results in order to test the model. We also model

globally coupled saline oscillators and bring out the dependence of coupling coefficients on

physical parameters of the system. We then study the synchronization behaviors of coupled

saline oscillators by the mean of numerical simulations carried out on the model equations.

These simulations agree with previously reported experimental results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear systems are common in nature. The dynamics

of a broad variety of such physical, electromechanical, chem-

ical and biological systems has been extensively studied in

the literature and modeled by nonlinear ordinary differen-

tial equations [1–3]. Several models of noise have sometimes

been added in such mathematical models to account for

the random fluctuations induced by the environment [4–7].

Noisy synchronization of self-sustained oscillators has been

studied so far in the literature. If the oscillators are coupled

weakly enough and if they are also subject to random distur-

bances, or “noise”, then the state of synchronization will not

be constant or fixed. Instead, the oscillators may for a time

become synchronized, but, due to the disturbances, may drop

out of synchrony and then regain it, and so on.

Some nonlinear systems, called self-oscillatory systems

[8–13], spontaneously exhibit regular rhythms. An example

is the so-called saline oscillator. In the last three decades, the
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dynamics of the periodic fluid flow which occurs when a sy-

ringe (without plunger) at the center of its base, filled with

salt solution and placed in a larger container filled with pure

water has been considered by several authors like Okamura

and Yoshikawa [14], Aoki [15], Miyakawa and Yamada [16,17].

This set-up known as saline oscillator has been shown to ex-

hibit many features of nonlinear oscillators as limit-cycle,

bifurcation of the oscillatory mode [18–22]. Okamura and

Yoshikawa clarified the mechanism of rhythmic fluid flow in

saline oscillator by performing the numerical computation

of a three-dimensional Navier–Stokes equation. They con-

cluded that pressure causes oscillation meanwhile viscos-

ity and inertia depress oscillation. They also show that the

saline oscillator can be modeled by the Rayleigh equation.

Aoki proposed the so-called mathematical model of the den-

sity oscillator and analyzed the existence of a limit-cycle and

a bifurcation to the oscillatory flow theoretically. Miyakawa

and Yamada experimentally studied two coupled salt-water

oscillators and observed synchronization phenomena. They

also investigated the effect of viscosity on coupling behav-

iors and reproduced experimental results by numerical sim-

ulations using coupled nonlinear differential equations of the

Rayleigh type. Málaga et al. [23] modeled the upward flow

and downward one separately by two differential equations
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of the same form. Kano and Kinoshita [24] derived a sole

model of a density oscillator by considering in addition to

the up-flow and down-flow, the flow-reversal process. Most

of works of the preceding researchers was therefore devoted

to modeling of that curious hydrodynamic oscillator.

Yoshikawa et al. [25–27] found through semi-quantitative

modeling that the essential features of saline oscillator are

reproducible by the Rayleigh equation. Later, Okamura and

Yoshikawa [14] model, through a full Navier–Stokes equation

simulation, the saline oscillator with an ordinary differential

equation of the same type. The present work is devoted, as

one of the issues, on refining the model presented by Oka-

mura by taking into account the implicit dependence on time

of the density and the specific viscosity of the fluid within

the orifice. In fact, if we make the wrong assumption that the

density of the fluid passing through the orifice is almost con-

stant at any time irrespective of the flow direction, then the

oscillator can be modeled by a single differential equation,

namely the Rayleigh equation; which seems to reproduce the

experimentally observed oscillatory trend. That is why sev-

eral investigators used a single Rayleigh equation to feature

the saline oscillator [14,16,18]. It has been experimentally ob-

served that when the specific viscosity of the salty solution is

larger than that of the pure water, the duration of the down-

ward flow is greater than that of the ascendant flow [17].

Such a feature, which cannot be accounted for by a single

differential equation, has its essence in the alternate change

of the fluid nature within the orifice. That is to say, the de-

pendence of the density and the specific viscosity of the fluid

in the orifice on time. We also derived the model equations

of coupled saline oscillators with the same assumptions. The

other issue of this work is the comparison of responses of the

model equations with known experimental and theoretical

results.

The rest of the paper is organized as follows: In Section 2,

a description and derived equations of the density oscilla-

tor are presented. In Section 3, the dynamics of the density

oscillator model is investigated through numerical simula-

tions and the behaviors of the amplitude and the intrinsic pe-

riod as function of model’s physical parameters are reported.

Section 4 is devoted to the derivation of model equations

of coupled saline oscillators. Synchronization properties are

then analyzed and compared to known results. Finally, a brief

conclusion is given in Section 5.

2. Description of the system and governing equations

The investigated system called saline (or density) os-

cillator was first discovered and described in 1970 by the

geophysicist Seelye Martin [28] who observed a rhythmic

oscillation made of ascendant and descendant fluid flows

through an experimental device consisting of a syringe with-

out plunger, filled with saline solution, held in the vertical

position, and then partially immersed in an outer vessel con-

taining pure water. The rhythmic flow was also observed by

Alfredsson and Lagerstedt [29] when a cup with a pinhole in

its bottom was used instead of a syringe. In the present inves-

tigation, the saline oscillator is consisting of a large cylinder

within which is held a cup with a pinhole in its base whose

radii are respectively c, b and a as presented schematically

in Fig. 1. The depth or thickness of the orifice is denoted by

Fig. 1. Schema of experimental set-up for saline oscillator. The inner con-

tainer is filled with salt water of density ρs and the large reservoir contains

pure water of density ρw . The constant hsis the initial height of salt water

while hw is the current height of pure water. Initially the level of pure water

and that of the salt water are the same. x(τ ) denote the shifting, at the time

τ , of the current level of salt water from its initial level. Note that a, b and c

are respectively radii of the orifice, the cup and the outer container. d is the

depth of the orifice.

d. The outer container and the inner cup are filled with pure

water and salt water with densities ρw and ρs respectively.

The flow within the orifice can be described by the

Navier–Stokes equation and an equation of continuity. We

suppose that the flow within the pinhole is parallel to the

z axis and we neglect the dependence of the z component of

the velocity on the z coordinate. The Navier–Stokes equation

is then written in the cylindrical coordinate system whose

origin is in the center of the bottom of the orifice. Follow-

ing the formulation of Yoshikawa et al. [26], we evaluate the

average of the Navier–Stokes equation over the volume of

the tube. We take the pressure loss or the head loss [26] of

the form suggested by Okamura and Yoshikawa [14], that is:

�P∗(τ ) = ρ(τ)(β〈w〉 − γ 〈w〉3)d, where 〈w〉 is the average

of the z component of the velocity, β and γ are coefficients

for the adjustment of the dimension which depend on the

shape of the orifice and where ρ , which is the density of the

fluid within the orifice, depends on the time τ . The pressure

difference on both ends of the orifice is given by (see Fig. 1):

P(d, τ ) − P(0, τ ) = ρsg(hs + x(τ )) − ρwghw

−ρ(τ)(β〈w〉 − γ 〈w〉3)d, (1)

where the height hw depends on x(τ ); that is:

hw = hs + d − Sin

Sout
x(τ ). (2)

Sin and Sout respectively represent the free surfaces areas of

salt water and pure one. Therefore, the equation describing

the movement of the free surface of salty water (see Fig. 1),

reduced from the Navier–Stokes equation, is given by
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