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a b s t r a c t

The main goal of this paper is to analyze the complexity of the asymptotic behavior of dissipa-

tive systems. More precisely, we want to explain how we can introduce the notion of extended

fractal dimension in the case of infinite dimensional sets. In particular, we study the global

attractor associated with the extended dynamical system induced by the complex Ginzburg–

Landau equation on the line CGL. Furthermore, we compute and investigate the invariance

of these quantities under an infinite type of metrics. As a direct consequence, we found that

the attractor is similar in terms of complexity to an L∞(R)-ball in the space of band-limited

functions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This article, which is at the interface between partial dif-

ferential equations, ergodic theory and functional analysis,

deals with the complexity of global attracting sets for dy-

namical systems provided by a parabolic PDE. Specifically,

the complex Ginzburg–Landau equation CGL on the whole

line (x ∈ R), which is written as follows:

∂t u = (1 + iα)�u + u − (1 + iβ)u|u|2, (1)
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where the unknowns u map R+
t × Rx into C and α, β are

parameters in R. It is well-known, as presented in [1], that

this equation on R possesses a global attractor denoted by A,

which attracts in L∞
loc

(R) all the trajectories. The complexity

of such attractors has been studied by many researchers, for

example: [2–9] and [10]. Most of those authors have pointed

out that these types of attractors is infinite dimensional (see

also Section 3.2). The complexity of such infinite dimensional

attractors has been first studied by Chepyzhov and Vishik

[11], by introducing the notion of Kolmogorov ε-entropy per

unit length [12] in this framework. They focus mainly on uni-

form attractors in bounded domain. However, this approach

seems to be particularly well suited for studying attractors

on unbounded domains.
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A pioneering work on CGL is due to Collet and Eck-

mann [2]. They prove that ε-entropy per unit length in L∞

framework is finite. Similarly, Zelik proves this result in sev-

eral frameworks, namely using different metrics based on

Sobolev spaces [8,9] and [10]. In [5], we introduced the

rescaled L2 and Hk norms, which seem to be adequate for

computing ε-entropy per unit length. These norms could be

used, at least, to obtain the subadditivity property (26) and,

therefore, the existence of the limit of the ε-entropy per unit

length (Formula (5) in Definition 3.3). Moreover, this rescaled

norms allow introducing another way to define the topologi-

cal entropy per unit length as presented in [6]. We want also

to highlight that the existence of the limit in Formula (5) is

more important in the case of topological entropy per unit

length, because of the use of lim sup to define the dimen-

sion of type (6). Furthermore, we believe that this framework

can be more suitable for a larger class of PDEs than those of

parabolic type.

Furthermore, using other tools introduced by Kolmogorov

and Tikhomirov in [12] for studying the notion of ε-entropy

of compact sets in functional spaces, Zelik gave in [8,9] and

[10] estimations of the orders of the ε-entropy growth for

this global attractor using different frameworks.

In this article, we put more emphasis on the usefulness

of using orders of growth of both ε-entropy per unit length

and ε-entropy of such functional sets to go further and talk

about extended fractal dimension. Here, in some sense, we

mean by extended fractal dimension of a given infinite di-

mensional set an adequate numerical characteristic that is

similar to a dimension. Indeed, as the well-known fractal di-

mension (4) in finite dimension, the extended fractal dimen-

sion is based on the ε-entropy or ε-entropy per unit length.

In other words, extended fractal dimension is equivalent to

fractal dimension but in infinite dimension. Examples of such

notions are formulas (6)–(8) given below.

One of the main objectives of using the notion of extended

fractal dimension is to be able to compute quantitative quan-

tities in order to compare rigorously the size and the com-

plexity of infinite dimensional sets.

In a sense, in this paper we deal with two extended fractal

dimensions.The first one is fractal dimension per unit length

introduced in [2], which is induced by the ε-entropy per unit

length. The second one is functional dimension introduced in

[12], based on the order of growth of the ε-entropy of the

global attractor. More precisely, the main contributions of

this article are:

• Theorem 3.2: we quantify the degree of chaos or freedom

for this attractor using the functional dimension and in-

vestigate the invariance of this quantity under both Hk
ρ(R)

and W k,∞
ρ (R) metrics (∀k ≥ 0). In this case, we are even

able to compute exactly this quantity.

• Theorem 3.3: we show that the fractal dimension per unit

length is an invariant for all W k,∞( − L, L) and rescaled

Hk( − L, L) metrics. Indeed, in finite dimension, the frac-

tal dimension is invariant because of the equivalence of

norms, but in infinite dimension the situation becomes

much more complicated.

In fact, this attractor contains bounded trajectories that

are analytical functions in space. Thus, Collet and Eckmann in

[2] prove, using ε-entropy per unit length, that this global at-

tractor is much smaller in terms of complexity than the space

of functions which are analytical and bounded in a strip. As a

consequence of Theorem 3.3, we have established in this arti-

cle that in fact this attractor is similar in terms of complexity

to the space of analytical functions f whose Fourier transform

f̂ are compactly supported.

The rest of this article is organized as follows: in Section 2

we highlight some well known facts about the dynamics of

the solutions of CGL equation on the line. We also make

precise the notion of (Z, Zρ )-attractor used in this paper.

Throughout Section 3, we focus on how to introduce the no-

tion of extended fractal dimension, mainly, by discussing the

finite dimensional case to understand the infinite dimen-

sional one, we then give our main result. Furthermore, in

Section 4 we give the proofs of the two main theorems of

this paper.

2. General framework for the CGL equation on the line

2.1. Notation and conventions

To begin with, we have to introduce some notations and

conventions. Throughout this article we will use constants

denoted by c, c′, C, K, … . that may vary from one line to one

another, and that may depend on the data α, β of CGL.

For a given Hilbert space as L2(B) wherein B is an inter-

val included in R, the scalar product of two functions reads

Re(
∫

B uvdx), where Re denote the real part.

We also use the standard Landau notations f = O(g) if

there exists a numerical constant C such that f ≤ Cg. We set

f � g if f = O(g) and g = O( f ). We write f = o(g), say for

L → +∞, if for any ε > 0, then for L ≥ Lε , f = O(εg).

2.2. Functional spaces

Let us start this general framework by defining the func-

tional spaces used. We introduce first a positive function

ρ : R → (0, ∞), which is called weight function with expo-

nential growth, that is in Cloc(R), bounded, and such that∫
R
ρ(x)dx < +∞. We can also assume without loss of gener-

ality that |ρ′(x)|, |ρ′′(x)| ≤ ρ(x) for all x. For instance ρ(x) =
e−|x| works and we shall deal with this weight function in the

sequel. Thus, we define the L2
ρ space as follows

L2
ρ =

{
u ∈ L2

loc(R)/‖u‖2
L2
ρ

=
∫
R

ρ|u|2dx < ∞
}
.

And the L∞ version,

L∞
ρ = {u ∈ L∞

loc(R)/‖u‖L∞
ρ

= sup
x∈R

{ρ(x)|u(x)|} < ∞}.
This functional spaces admit Sobolev versions for k ≥ 1,

Hk
ρ=

{
u ∈ Hk

loc(R)/‖u‖2
Hk

ρ
=

∫
R

ρ(x)

(
k∑

i=0

|∂iu(x)|2

)
dx<∞

}
,

W k,∞
ρ =

{
u ∈ W k,∞

loc
(R)/‖u‖

W k,∞
ρ

= sup
x∈R

{
ρ(x)

(
k∑

i=0

|∂iu(x)|
)}

< ∞
}

.
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