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a b s t r a c t

The behavior of shear-induced cross-correlation functions between particle fluctuations along

orthogonal directions in the shear plane for harmonically trapped Brownian particles in a

viscoelastic shear flow is studied. A generalized Langevin equation with a power-law-type

memory kernel is used to model the complex structure of the viscoelastic media. Interaction

with fluctuations of environmental parameters is modeled by a multiplicative white Gaussian

noise, by an internal fractional Gaussian noise, and by an additive external white noise. It is

shown that the presence of a memory has a profound effect on the behavior of the cross-

correlation functions. Particularly, memory-induced reentrant sign reversals of the spatial

cross-moment between orthogonal random displacements of a particle are established, i.e.,

an increase of the memory exponent can cause the sign reversal from positive to negative, but

by a further increase of the memory exponent a reentrant transition from negative to pos-

itive values appears. Similarities and differences between the behavior of the models with

additive internal and external noises are considered. It is shown that additive external and

internal noises cause qualitatively different dependencies of the cross-correlation functions

on the time lag. The occurrence of energetic instability due to the influence of multiplicative

noise is also discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Combined inertial and diffusive motion of Brownian par-

ticles in a flowing fluid (e.g. aerosols or dusty plasmas) has

long been of interest for its important industrial and en-

gineering applications [1]. Of particular interest are small

mesoscopic systems such as colloidal particles, nanoparticles

in solutions, or biological systems in cells, all of which are

dominated by fluctuations [2] and can be considered as com-

plex systems at some microscopic level. It is well known that

a stochastic force (noise) can modify the behavior of nonequi-

librium complex systems in a counterintuitive way and thus
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induce unexpected ordered outcomes such as stochastic res-

onance [3–6], ratchet effect [7–10], noise-enhanced stability

[1,11,12], anomalous transient behavior of ecosystems [13],

anomalous diffusion [14,15], etc. Particularly, experiments

from many different areas reveal that anomalous diffusion

with a mean-square displacement of particles 〈r2(t)〉 ∼ tα ,

(α �= 1) is ubiquitous in nature, signaling that slow trans-

port, (α < 1), may be generic for complex heterogeneous

materials [14]. Although the behavior of Brownian motion

in quiescent fluids has been investigated in detail, the un-

derstanding of noise driven particle dynamics in flows is far

from complete, in spite of its fundamental relevance and im-

portance in microfluidic applications [2,16]. Recently, several

studies have focused on the stochastic dynamics of under-

damped Brownian particles trapped by harmonic potentials

and exposed to shear flows [2,16–20]. The interest in har-

monically trapped particles has been stimulated by some
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relatively new experimental techniques to trap mesoscopic

particles, such as laser-optical tweezers [21,22], which allow

direct observation and manipulation of individual particles

under the influence of external forces of flows [16]. How-

ever, in papers [2,16–20] it is assumed that the interaction of

Brownian particles with shear flow is characterized by Stokes

friction. The latter is irrelevant for shear flow in viscoelas-

tic media, where anomalous diffusion occurs [23,24]. Exam-

ples of such systems are supercooled liquids, colloidal sus-

pensions, polymer solutions [25,26], the cytoplasm of living

cells [27,28], and dusty plasmas [29]. Moreover, the previ-

ous calculations are based on models without multiplicative

noise. It is important to note that multiplicative noise arises

in a natural way in quantitative measurements with laser-

optical tweezers, where the stiffness of the effective trap-

ping potential may fluctuate [21]. Furthermore, multiplica-

tive noise emerges in the description of complex systems

as result of the elimination of fast degrees of freedom [30].

Therefore formalisms which are supposed to describe com-

plex processes and which do that in terms of additive noise

alone, may miss essential features of the problem. Recently,

to overcome part of these problems the authors of Ref. [31]

have considered a generalized Langevin equation (GLE) with

a power-law-type memory kernel, which models the dynam-

ics of an underdamped Brownian particle in a fluctuating har-

monic potential well subjected to an oscillatory viscoelas-

tic shear flow. The influence of a fluctuating environment is

modeled by a multiplicative white noise (fluctuations of the

stiffness of the trapping potential) and by an internal frac-

tional Gaussian noise. It was shown that an interplay of shear

flow, memory, and multiplicative noise can generate a variety

of cooperation effects, such as energetic instability, multires-

onance versus the shear frequency, memory-induced anoma-

lous diffusion in the direction of the shear flow, etc. How-

ever, the paper [31] leaves open an important question, both

from the theoretical and practical viewpoints, namely, what

happens if the internal noise is replaced with an external

noise.

Motivated by the theoretical results of Refs. [31] and [16–

20,32], the present paper considers a model similar to the

one presented in [31], except that the oscillatory shear flow

is replaced with a time-independent shear flow as in [16–

18,20] and that the additive internal noise is replaced with

a superposition of an internal noise and a white external

noise. The last mentioned modification enables to discern

effects caused by internal and external noises, which may

be an actual necessity in experiments. In the framework of

this modified model, we study in more detail than in [31]

the behavior of shear-induced cross-correlation functions

between particle fluctuations along orthogonal directions in

the shearplane. It should be noted that shear-induced cross-

correlation functions of particle fluctuations are the main ob-

ject of the experimental investigations reported in [20].

The main contribution of this paper is as follows. In

the long-time limit, t → ∞, we provide exact formulas

for the analytical treatment of the dependence of particle

cross-correlation functions on system parameters, such as

the memory exponent, the shear rate, the damping coeffi-

cient, and the intensities of the multiplicative and additive

noises. As our main result, memory-induced sign reversals

of the spatial cross-moments between orthogonal random

displacements of a particle are established. Particularly, it is

shown that in the case of internal noise (without additive ex-

ternal noise) this highly unexpected effect occurs only if the

intensity of fluctuations of the trapping potential is lower

than a certain critical value. Let us note that in the case of

Stokes friction the corresponding cross-moment is always

positive. Moreover, it is shown that additive external and in-

ternal noises cause qualitatively different dependencies of

the cross-correlation functions on the lag time.

The structure of the paper is as follows. In Section 2, on

the basis of Ref. [31], we present the model investigated. Ex-

act formulas for the analysis of the behavior of the cross-

correlation functions are presented in Section 3. In Section 4

we analyze the behavior of the cross-correlation functions

and expose the main results of this paper. Section 5 contains

some brief concluding remarks.

Finally, to avoid misunderstandings, let us mention that

the effect of memory-induced sign reversals of the spatial

cross-moment is a novel effect not considered previously in

Ref. [31].

2. Model

As in our previous work [31], we consider a Brownian

particle of the unit mass (m = 1) suspended at the position

r = (X,Y, Z) in a viscoelastic flow field with parallel stream-

lines in the x direction

v(r, t) = ρY(t)ex, (1)

where ex denotes the unit vector in the x direction and ρ is

the shear rate. The particle is trapped by a harmonic potential

with its minimum at r0 = 0,

U(r) = ω2

2
r2, (2)

where ω is the trap frequency. As a model for such a system

with memory, strongly coupled with a noisy environment,

we consider a GLE with a fluctuating harmonic confinement

potential Ũ(r)

r̈(t) + γ

∫ t

0

η(t − t ′)[ṙ(t ′) − v(r(t ′), t ′)]dt ′

+ ∇Ũ(r(t)) = ξ(t), (3)

where ṙ(t) ≡ dr/dt and γ is the damping coefficient (friction

coefficient) [31]. The fluctuating confinement potential Ũ(r)
is assumed to be in the form

Ũ(r) = U(r) + 1

2

(
X2 · ξ (3)

1
(t) + Y 2 · ξ (3)

2
(t) + Z2 · ξ (3)

3
(t)

)
,

(4)

where ξ
(3)

(t) = [ξ (3)
1

(t), ξ (3)
2

(t), ξ (3)
3

(t)] is a white Gaussian

noise with the properties

〈ξ(3)
(t)〉 = 0,

〈
ξ (3)

i
(t) ξ (3)

j
(t ′)

〉
= 2Dδi jδ(|t − t ′|), (5)

with δij denoting the Kronecker symbol.

The noise ξ(3)(t) with intensity D is assumed as statisti-

cally independent from the noise ξ(t) = [ξ1(t), ξ2(t), ξ3(t)].

Depending on the physical situation, the zero-centered driv-

ing noise ξ(t) can be regarded either as an internal noise, in
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