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a b s t r a c t

The aim of this paper is to understand the tendency to organization of the turbulence in two-

dimensional ideal fluids. A different perspective on vorticity separation and on the inverse

cascade of energy yields from this study. Trajectory trapping or eddying appears to be strongly

connected to these nonlinear processes. The statistics of the trajectories of the vorticity ele-

ments in a turbulent state is studied using a semi-analytic method. We show that the separa-

tion of the positive and negative vorticities is due to the attraction produced by a large scale

vortex on the small scale vortices of the same sign. More precisely, a large scale velocity is

shown to determine average transverse drifts, which have opposite orientations for positive

and negative vorticity. They appear only in the presence of trapping and lead to energy flow

to large scales due to the increase of the circulation of the large vortex. Recent results on drift

turbulence evolution in magnetically confined plasmas are discussed in order to underline

the idea that there is a link between the inverse cascade and trajectory trapping. The physical

mechanisms are different in fluids and plasmas due to the different types of nonlinearities of

the two systems, but trajectory trapping has the main role in both cases.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The two-dimensional fluid turbulence has represented

during more than 70 years an active field of research (see

the review papers [1–4] and the references therein). It has

many applications in different areas as fluid dynamics,

meteorology, oceanography, fusion plasmas, superfluids,

superconductors and astrophysics, in spite of the fact that it

provides only idealized models for physical systems that are

always three-dimensional.

The two-dimensional turbulence has a self-organizing

character, which is related to the invariance of both energy

and enstrophy in ideal (inviscid) fluids. Numerical stud-

ies of the decaying turbulence clearly show this property

and the associated scaling behavior [5–7]. The enstrophy

has a direct cascade (to small scales), but with a complex
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evolution characterized by the presence of inverse cascade in

isolated regions [8,9]. The energy has an inverse cascade (to

large scales) that leads to the emergence of large quasicoher-

ent vortices. The process of self-organization can continue

until the coherent vortices reach the size of the system

[10,11]. This behavior was explained in the representation

of point-like vortices by a negative temperature [12,1,13]

or by the property of self-duality of the associated field

theoretical model [14]. The latter approach was extended

to models of planetary atmosphere and of magnetized

plasmas [15].

This paper deals with the turbulent states and studies

the self-organization during its initial stage, before the emer-

gence of large coherent vortices of the system size. Our ap-

proach belongs to the Lagrangian statistical formalism, which

is based on determining the statistics of test particle (tracer)

trajectories (see the review paper [4]).

We show that trajectory trapping or eddying in the

structure of the turbulence is the main physical reason

for the strong nonlinear effects that are observed in two-

dimensional ideal fluids. This conclusion is drawn from a
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Fig. 1. A typical trajectory obtained from Eq.(1) forK = 10, Vd = 0 and the

stream function used in the simulations presented in [30].

study of the statistics of test particles (tracers) in turbulent

Euler fluids.

This study is based on a series of recent results on the

statistical properties of test particle trajectories in incom-

pressible two-dimensional velocity fields. Numerical simula-

tions have shown that trajectories are complex, as they have

both random and quasi-coherent aspects. A typical trajectory,

shown in Fig. 1, is a random sequence of long jumps and trap-

ping events that consists of winding on almost closed paths.

Analytical methods that describe the statistics of these tra-

jectories were developed [16,17] and used for understanding

various aspects of turbulent transport. It was shown that they

provide a very good description of the nonlinear effects pro-

duced by trajectory trapping or eddying and reasonably ac-

curate quantitative results for the diffusion coefficients and

for other statistical averages.

The conclusion of these studies is that trajectory trapping

or eddying leads to nonstandard statistics: memory effects

(represented by long time Lagrangian correlation), strongly

modified transport coefficients and non-Gaussian distri-

butions of displacements. It was also shown that trapping

determines a large degree of coherence in the sense that

bundles of trajectories that start from neighboring points

remain close for very long time compared to the eddying

time. Trapped trajectories form quasi-coherent structures

similar to fluid vortices. Extensive theoretical [18–22] and

numerical studies [23–25] have contributed significantly

in the last decades to the understanding of the turbulent

transport in laboratory or space plasmas, in fluids or in

stochastic magnetic fields.

A strong connection between test particle trapping and

turbulence evolution was found in [26] from a study of test

modes on turbulent plasmas. Analytical results that are in

agreement with numerical simulations were obtained, and

they allowed to deduce a new physical perspective on the

nonlinear process of generation of large scale correlations

(inverse cascade) and of zonal flow modes. Essentially, they

are effects of ion trajectory trapping or eddying.

We show here that trapping has an essential role in

two-dimensional fluid turbulence. A nonlinear effect pro-

duced by trapping of the vorticity elements brings a different

perspective on the separation of positive and negative vortic-

ity and on the inverse cascade of the energy.

The paper is organized as follows. The problem of test par-

ticle or tracer transport is defined in Section 2.1. Section 2.2

contains a short presentation of the analytical statistical

approach, the decorrelation trajectory method (DTM). The

effects of trapping or eddying on tracer transport and on

the statistical characteristics of the trajectories are discussed

in Section 3. This section contains a review of the previous

work and new results on the modifications of the trajectory

structures determined by an average velocity. The effects

of trapping on the decaying two-dimensional turbulence in

ideal fluids are analyzed in Section 4.1. The physical process

that determines the separation of the positive and negative

vorticities and leads to the inverse cascade of the energy is

identified in this approach. The average speed of vorticity

separation is estimated. Section 4.2 is a short discussion on

recent results on plasma turbulence evolution, which shows

that trajectory trapping has an essential role in the inverse

cascade, although the physical mechanism is completely

different. The conclusions are summarized in Section 5.

2. Test particle transport and the statistical method

2.1. The problem

The problem of test particle or tracer advection in two-

dimensional incompressible velocity fields is described by

the stochastic equation:

dx(t)

dt
= v[x(t), t] + Vdey, (1)

where x(t) is the trajectory in the plane (ex, ey), v(x, t) is

the stochastic velocity and Vdey is an average velocity that

is taken in the ey direction. The velocity is a continuous

function of x and t in each realization and it determines an

unique trajectory as the solution Eq. (1) with the initial con-

dition x(0) = 0. The stochastic velocity v(x, t) is incompress-

ible [∇ · v(x, t) = 0] and is represented by a scalar field, the

stochastic potential or stream function

v(x, t) = ez × ∇φ(x, t) = (−∂yφ(x, t), ∂xφ(x, t)). (2)

The potential φ(x, t) is considered to be a stationary and ho-

mogeneous Gaussian stochastic field, with zero average and

given two-point Eulerian correlation function (EC)

E(x, t) ≡ 〈φ(x′, t ′)φ(x′ + x, t ′ + t)〉 (3)

where 〈���〉 denotes the statistical average over the real-

izations of φ(x, t) or the integral over x′ and t′. The main

parameters of the EC are: the amplitude of the potential

fluctuations β2 = E(0, 0), the correlation length λc and the

correlation time τ c, which are the characteristic length and

time of the decay of the function E(x, t). The EC’s of the

velocity components are obtained as space derivatives of E(x,

t) and the amplitude of the stochastic velocity is V = β/λc.

Starting from the above statistical description of the

stochastic potential and from an explicit EC one has to deter-

mine the statistical properties of the trajectories. This prob-

lem is nonlinear due to the space dependence of the poten-

tial, which leads to x dependence of the EC (3).

The equation of motion is nonlinear due to the space de-

pendence of the velocity field. The trajectories are solutions
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