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a b s t r a c t

In this article we study, through extensions of the generalized Gaussian scheme, the dynamics

of semiflexible treelike polymers under the influence of external forces acting on particular

(say, charged) monomers. Semiflexibility is introduced following our previous work (Dolgu-

shev and Blumen, 2009 [15]), a procedure which allows one to study treelike structures with

arbitrary stiffness and branching. Exemplarily, we illustrate the procedure using linear chains

and hyperbranched polymers modeled through Vicsek fractals, and obtain in every case the

monomer displacement averaged over the structure. Anomalous behavior manifests itself in

the intermediate time region, where the different fractal architectures show distinct scaling

behaviors. These behaviors are due to the power law behavior of the spectral density and

lead, for arbitrary pulling forces, based on causality and the linear superposition principle, to

fractional calculus expressions, in accordance to former phenomenological fractional laws in

polymer physics.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the milestones of polymer science is the relation-

ship between structure and dynamics. A major role in this as-

pect plays the polymer architecture, which can be taken into

account using the generalized Gaussian structures’ (GGS) for-

malism [1,2]. Now, for several classes of polymers the role of

their topology on the dynamics in external fields has been

studied using the standard GGS formalism. This classes in-

clude stars and dendritic polymers [3], scale-free polymer

networks [4,5], hyperbranched polymers modeled by Vicsek

fractals [6,7], Sierpinski gaskets [8], and also multihierarchi-

cal fractals [9]. In this respect regular fractal structures are of

much interest since their dynamical properties may display

scaling. From a practical point of view several types of hier-

archically built, regular structures allow one to study their

dynamics to a large extent analytically [6–8].
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However, the standard GGS formalism neglects some

important polymer features, such as the excluded volume

and the hydrodynamic interactions; moreover, in the stan-

dard GGS approach the semiflexibility of polymer strands

is not accounted for. Now, semiflexibility is particularly im-

portant when macromolecules of biological interest, such

as DNA [10] or actin networks [11] are investigated, which

possess a significant degree of stiffness [12–14]. Recently,

we presented ways of taking such stiffness into account

through an extension of the GGS-model for semiflexible tree-

like polymers (STP) [15]. In fact, the new model is quite

general: It allows to treat treelike structures, in which at

each single junction the functionality (number of near-

est neighbors) and the degree of semiflexibility can vary.

Clearly, the presence of such additional parameters ren-

ders the STP theory more complex than the standard GGS

method. Nonetheless, as we showed recently in treating reg-

ular fractal structures, the STP framework still allows to

handle semianalytically very large structures, which other-

wise would not be accessible to a brute-force diagonalization

procedure [16].
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Nowadays, new techniques allow to manipulate particu-

lar sites of polymers, say by letting such sites be dragged by

external pulling forces [11,17]. It is thus of interest to analyze

theoretically the impact of external fields on the polymers’

dynamics. To be more specific, here we study the dynamics

of semiflexble Vicsek fractals (VF) under such external

forces, by employing a Langevin approach based on the

STP-method [15]. A basic quantity is then the average over

the structure (structural average, SA) of the mean monomer

displacement 〈〈y(t)〉〉 as a function of time. As we proceed to

show, in the STP-framework the 〈〈y(t)〉〉 obeys an equation

formally very similar to that found in the GGS model, the

difference residing in the different eigenvalues obtained

in the presence or absence of stiffness. This allows us to

study the 〈〈y(t)〉〉 of semiflexible VF by using the reduced

diagonalization scheme of Ref. [16]. As we proceed to show,

the displacements of the VF monomers are sensitive to the

inclusion of local stiffness constraints, especially for short

times. However, the particular character of the subdiffusive

behavior remains unchanged. This result differs from the

behavior of linear chains, for which similar local constraints

lead to a new, additional subdiffusive scale for short times.

The paper is structured as follows: Section 2 is devoted

to the theoretical model; in it we display the necessary

extensions of the GGS to include stiffness and we discuss

the role of the external fields. In Section 3 we briefly recall

structural and spectral properties of VF. In Section 4 we study

the dynamics of VF. In each case we display the numerically

evaluated 〈〈y(t)〉〉 and discuss the findings in the presence of

stiffness. The paper ends with our conclusions.

2. The model

Both the GGS [1] and the STP model [15] are based on the

classical bead-and-spring picture [18]. We will use {rk} to de-

note the centers of the N beads and {da} for the N − 1 bonds

(springs), so that e.g. da = rn − rm is the bond connecting

n and m. Following [15,19–23], semiflexibility is introduced

based on the potential

VSTP({da}) = K

2

∑
a,b

Wab da · db. (1)

Here the sum runs over all bonds a and b. The spring con-

stant is K = 3kBT/l2, while kB and T denote the Boltzmann

constant and the temperature, respectively, while l2 is the

bond mean-square length, which is taken to be identical for

all bonds. For trees the bonds {da} are independent of each

other. Assuming them to be Gaussian distributed implies for

the averages 〈da · db〉 that [15]

〈da · db〉 = l2(W−1)ab, (2)

so that the matrix W = (Wab) is known when all the val-

ues {〈da · db〉} are known. Now following the traditional as-

sumptions [15,19–23] the average square length of all bonds

is taken to be constant, say 〈d2
a〉 = l2, and for two adjacent

bonds, say da and db, one requires that

〈da · db〉 = ±l2qi (3)

is obeyed, where the plus sign holds for a head-to-tail ori-

entation of the bonds and the minus sign otherwise. In Eq.

(3) qi is the stiffness parameter related to site i, common to

the bonds da and db. Further relations between nonadjacent

bonds follow readily from a maximum entropy principle and

turn out to be consistent with the picture of freely-rotating

segments [15]. Thus, any two non-adjacent bonds, say da and

dc, fulfill the condition

〈da · dc〉 = 〈da · db1
〉〈db1

· db2
〉 · · · 〈dbk

· dc〉l−2k, (4)

where (b1, . . . , bk) is the unique path connecting a and c.

As it was shown in Ref. [15], based on Eqs. (2)–(4) the ma-

trix W can be expressed for treelike structures analytically.

Transforming the bond variables {da} to bead variables {rk}

one obtains the potential energy of a STP [15]

VSTP({ri}) = K

2

N∑
i, j = 1

ASTP
i j ri · r j, (5)

where the elements of the matrix ASTP = (ASTP
i j

) are as follows

[15]:

ASTP
ii = fi

1 − ( fi − 1)qi

+
∑

ik

( fik
− 1)q2

ik

1 − ( fik
− 2)qik

− ( fik
− 1)q2

ik

,

(6)

ASTP
iik

= − 1 − ( fi − 1)( fik
− 1)qiqik

(1 − ( fi − 1)qi)(1 − ( fik
− 1)qik

)
, (7)

and

ASTP
iiks

= qik

1 − ( fik
− 2)qik

− ( fik
− 1)q2

ik

. (8)

In Eqs. (6)–(8) ik denotes a nearest neighbor of bead i and

iks denotes a next-nearest neighbor of bead i, which is con-

nected to i through the bead ik. Moreover, qj stands for the

stiffness degree and fj for the functionality (number of near-

est neighbors) of bead j.

Now, the dynamics of STP is given by the following set of

Langevin equations:

ζ ṙn(t)+ ∂

∂rn
VSTP({ri(t)})=f̃n(t)+Fp

n(t), for n = 1, . . . , N.

(9)

Here ζ is the friction coefficient, VSTP({ri}) is given by Eq. (5),

and f̃n(t) is the random force (thermal noise) acting on the

nth bead; the distribution of {f̃n(t)} is taken to be Gaussian

with 〈f̃n(t)〉 = 0 and 〈 f̃αn(t) f̃βm(t′)〉 = 2kBTζ δαβδnmδ(t −
t′). In this way Eq. (9) fulfills the requirements of the

fluctuation-dissipation-theorem, where the pulling forces

F
p
n(t) are in principle arbitrary and are assumed to act on a

particular bead (say the kth) only. To fix the ideas, F
p
n(t) is

switched on at time t = 0 and is oriented along the y-axis.

Hence

Fp
n(t) = δnkF0θ(t)ey, (10)

where F0 is the magnitude of F
p
n(t) and ey is the unit vector

in the y-direction. With it the y-components of the Langevin

set, Eq. (9), read:

ζ ẏn(t) + K

N∑
m=1

ASTP
nm ym(t)

= f̃yn(t) + δnkF0θ(t), for n = 1, . . . , N, (11)
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