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a b s t r a c t

We study the dynamical properties of a two-dimensional ensemble of self-propelled dumb-

bells with only repulsive interactions. After summarizing the behavior of the translational

and rotational mean-square displacements in the homogeneous phase that we established in

a previous study, we analyze their fluctuations. We study the dependence of the probability

distribution functions in terms of the Péclet number, describing the relative role of active

forces and thermal fluctuations, and of particle density.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Active matter is characterized by the continuous partial

conversion of internal energy into work. Some examples, at

different scales, are the cytoskeleton, bacterial colonies, algae

suspensions, bird flocks and schools of fish. Self-propelled

units can also be artificially realized in the laboratory in dif-

ferent ways, for example, by surface treatment of colloidal

particles [1,2]. All these systems live, or function, in condi-

tions far from thermodynamic equilibrium and pose chal-

lenging questions to non-equilibrium statistical mechanics.

Active matter exhibits non-trivial collective properties that

have no analog in passive materials such as large scale coher-

ent motion in the absence of any attractive interaction and

a phase separation into an aggregate and a gas-like phase.

Several review articles are devoted to this rapidly developing

field of research [3–13].

The diffusive properties in these systems are of particu-

lar interest. A number of experimental and numerical stud-

ies addressed how the diffusive properties are affected by

∗ Corresponding author. Tel.: +39 080 5442435; fax: +39 080 5442470.

E-mail addresses: leticia@lpthe.jussieu.fr (L.F. Cugliandolo), gonnella@

ba.infn.it (G. Gonnella), antonio.suma@gmail.com (A. Suma).

self-propulsion and the density of the suspension; some fo-

cused on the dynamics of passive tracers immersed in the

active bath [14], others focused instead on the mean-square

displacement of the active particles themselves [15–18].

An interesting model of active matter is one in which the

active components have the elongated shape of many nat-

ural swimmers. A first study of the phase diagram of such

a system with active dumbbells molecules [19] appeared in

[20,21]. The analysis of effective temperature ideas [22], and

the averaged rotational and translational mean-square dis-

placements were presented in [23] and [24], respectively, for

a two-dimensional system.

In this paper we recall some of the results in these pub-

lications and we extend the analysis to the fluctuations of

translational and rotational degrees of freedom. In Section 2

the dumbbell model is very briefly explained. In Section 3 the

numerical results for the translational and rotational fluc-

tuations in the interacting active system are presented. A

discussion will complete the paper in Section 4.

2. The model

We briefly present the model and the parameters used

in the simulations. More details can be found in [23,24]. The
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dumbbells are diatomic molecules formed by two spherical

colloids, elastically linked together via the finite extensible

non-linear elastic force

Ffene = − kr

1 − (r2/r2
0)

, (1)

with k > 0 and r = r1 − r2 the vector linking the centers

of the spherical colloids, with diameter σ d and mass md. An

additional Weeks–Chandler–Anderson potential,

Vwca(r) =
{

VLJ(r)− VLJ(rc) r < rc

0 r > rc

with

VLJ(r) = 4ε

[(σd

r

)12

−
(σd

r

)6
]

, (2)

where ε is an energy scale and rc is the minimum of the

Lennard–Jones potential, rc = 21/6σ d, is added to ensure that

the colloids in the same molecule do not overlap. The active

forces are polar and act along the main molecular axis n̂,

are constant in modulus but follow the molecules’ rotations,

and are the same for the two spheres belonging to the same

molecule,

Fact = Fact n̂. (3)

Fact is directed from the ith colloid (tail) to the i + 1th col-

loid (head). The active forces are applied to all molecules in

the sample during all their dynamic evolution. We take the

interaction between the spheres in different dumbbells to be

purely repulsive.

Putting these ingredients together, the dynamic equations

are

mdr̈i(t) = −γ ṙi(t)+ Ffene(ri,i+1)

+ηi −
2N∑
j=0
j �=i

∂V
ij
wca

∂rij

rij

rij

+ Facti, (4)

mdr̈i+1(t) = −γ ṙi+1(t)− Ffene(ri,i+1)

+ηi+1 −
2N∑
j=0

j �=i+1

∂V
i+1,j
wca

∂ri+1,j

ri+1,j

ri+1,j

+ Facti

with i = 1, 3, . . . 2N − 1, rij = ri − rj, rij = |rij| and V
ij
wca ≡

Vwca(rij) with Vwca defined in Eq. (2).

The coupling to the thermal bath at temperature T is mod-

eled in the manner of Langevin, with γ the friction coefficient

and η a Gaussian random noise with zero mean, 〈ηia(t)〉 = 0,

and

〈ηia(t)ηjb(t
′)〉 = 2γ kBTδijδabδ(t − t′), (5)

with kB the Boltzmann constant. a and b label the coordinates

in d dimensional space. An effective rotational motion is gen-

erated by the random torque due to the white noise acting

independently on the two beads.

The surface fraction is

φ = N
Sd

S
(6)

with Sd = πσ 2
d
/2 the area occupied by an individual dumb-

bell in d = 2, S the total area of the box and N their total

number. The spring is supposed to be massless and void of

surface. We impose periodic boundary conditions on the two

directions.

The Péclet number, Pe, is a dimensionless ratio between

the advective transport rate and the diffusive transport rate.

For particle flow one defines it as Pe = Lv/D, with L a typical

length, v a typical velocity, and D a typical diffusion constant.

We choose L → σ d, v → Fact/γ and D → D
pd
cm = kBT/(2γ ) of

the passive dumbbell to be derived below; then,

Pe = 2σdFact

kBT
. (7)

The active Reynolds number React = mdFact/(σ dγ
2) is defined

in analogy with the hydrodynamic Reynolds number.

3. Single dumbbell dynamics

The averaged single dumbbell motion can be derived an-

alytically under the hypothesis that r � σ d. Details on the

calculations can be found in [23,24]. Here, we simply sum-

marize the main results. Within this approximation, at ab-

solute times and time-differences that are longer than the

inertial time-scale tI = md/γ , not taking into account its pe-

riodic character, the angle θ between the dumbbell’s main

molecular axis and an axis fixed to the laboratory is a Gaus-

sian random variable with mean 〈θ〉 = θ0 that diffuses

according to

〈θ2〉 = θ2
0 + 2DRt (8)

with θ0 the initial angle, t the time-delay, and the angular

diffusion constant

DR = 2kBT

γ σ 2
d

. (9)

Averaging over the initial angles, taken from a flat distribu-

tion around θ0 = 0, yields 〈θ〉 = 0 and, in the long times

limit, 〈θ2〉 → 2DRt. In the absence of interactions, the angular

displacements, �θ between two times that are longer than

tI is also Gaussian distributed. If one imposes the periodicity

of the angles in the interval [−π , π ] the angular distribution

remains flat.

The translational mean-square displacement is ballistic

in the limit t � tI, and crosses over to a very rich behavior

beyond this time-scale,

〈	r2
cm〉(t) = 4D

pd
cm t +

(
Fact

γ

)2 2

DR

(
t − 1 − e−DRt

DR

)
, (10)

where

D
pd
cm = kBT

2γ
(11)

is the diffusion constant in the passive limit, Fact = 0, see

[23]. This equation presents several time scales and limits.

For tI 
 t 
 ta = D−1
R one finds

〈	r2
cm〉 = 4D

pd
cm t +

(
Fact

γ

)2

t2, (12)

that can still be split into the passive diffusive limit 〈	r2
cm〉 =

4D
pd
cm t for tI � t < t∗ � ta, and a ballistic regime 〈	r2

cm〉 =
(Fact/γ )2 t2 for t∗ < t � ta, where the time scale t∗ is
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