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a b s t r a c t

The key purpose of this article is to establish a connection between two emerging fields of re-

search in theoretical biology. The former focuses on the concept of criticality borrowed from

physics that is expected to be extensible to biology through a robust theoretical approach

that although not yet available shall eventually shed light into the origin of cognition. The lat-

ter, largely based on the tracking of single molecules diffusing in biological cells, is bringing

to the general attention the need to go beyond the ergodic assumption currently done in the

traditional statistical physics. We show that replacing critical slowing down with temporal com-

plexity explains why biological systems at criticality are resilient and why long-range corre-

lations are compatible with the free-will condition necessary for the emergence of cognition.

Temporal complexity generates ergodicity breakdown and requires new forms of response of

complex systems to external stimuli. We concisely illustrate these new forms of information

transport and we also address the challenging issue of combining temporal complexity with

coherence and renewal with infinite memory.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The main purpose of this paper is to establish a con-

nection between two emerging theoretical perspectives that

physicists are adopting in their attempt at addressing funda-

mental biological issues beyond the limits of reductionism

[1]. The former theoretical perspective is illustrated by the

debate about the important work of Ref. [2]. In fact, the re-

cent experiment of Ref. [2] is attracting [3] the attention of

researchers on the key role of criticality in biology, thereby

leading them to look, for instance, at the very interesting pro-

posals of [4,5]. In the conclusion of their article the authors

of Ref. [5] emphasize the phase-transition related property

of critical slowing down, namely the infinitely slow regression

to equilibrium of processes at criticality, pointing out how-

ever the existence of a possible conflict with the resilience

∗ Tel.: 9405653294, 9405945789.

E-mail address: grigo@unt.edu

of complex biological systems that are expected to promptly

adapt themselves to the changes of their environment, the

swarm of birds of Ref. [2] being an outstanding example of

biological resilience. An interesting experiment concerning

the cognition of living beings is given by the work done at

the Duke University by the group of Nicoliles [6]. In this ex-

periment a rat A moving in a box transmits information to

a rat B moving in a different box through a cable connecting

the neural network of the brain of rat A to the neural network

of the brain of rat B. This experiment is the in vivo counter-

part of the in vitro experiment done in 1999 at the University

of North Texas by the group of Guenter Gross [7], interpreted

by the authors of this interesting paper as a form of chaos

synchronization. Thus, we see a fast progress from the 1999

in vitro experiment of Ref. [7] to the 2013 in vivo experiment

of Ref. [6] and from there to the 2014 experiment of Ref. [8]

concerning the same kind of information transfer from the

brain of one human subject to that of another. Actually, this

form of synchronization seems to be a natural property of

the dialogue between two individuals [9], leaving however
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unknown the statistical roots of these synchronization pro-

cesses.

The latter remarkable example of biological complexity

is illustrated in the recent review paper [10], reflecting the

growing interest for anomalous diffusion in biological cells,

as a paradigm of the special nature of biological processes.

The authors of this review paper refer to two forms of non-

conventional statistical mechanical processes to account for

molecular diffusion. The former is the continuous time ran-

dom walk (CTRW) model introduced by Scher and Montroll

[11] and by Montroll and Weiss [12]. The random walker

makes jumps that are not necessarily anomalous, but the

time distance τ between two consecutive jumps rests on a

waiting time distribution density ψ(τ )∝1/(τμ), with μ < 2,

thereby making these events crucial generators of ergodic-

ity breakdown. The latter tool is given by a long-range corre-

lation theoretical perspective, with no events, based on the

generalized Langevin equation (GLE) by Mori [13] and the

fractional Brownian motion (FBM) developed by Mandelbrot

and van Ness [14] to assign infinite memory to the ordinary

Brownian motion.

We plan to show that although apparently unrelated, the

perspective of biological processes emerging from the work

of Refs. [3–5] and that afforded by the authors of [10] may

be unified by theoretical progress on open problems gener-

ated by ergodicity breaking: the response to stimuli of non-

ergodic systems, and, even more challenging, the response to

perturbation of systems under the joint action of both ergod-

icity breaking renewal events and of long-memory fluctua-

tions compatible with coherence. The main aim of this article

is to relate these forms of synchronization to criticality [15]

through the key property of temporal complexity. In Section 2

we illustrate the difference between critical slowing down

and temporal complexity. We devote Section 3 to illustrating

another significant aspect of biological processes, anomalous

diffusion in biological cells. In Section 4 we discuss the appar-

ently conflicting presence of both temporal complexity and

coherence in the brain, mirroring the surprising joint action

of infinite memory and renewal events in the processes of

anomalous diffusion in biology. Finally we devote Section 5

to express our wishes for future research work that may lead

to a satisfactory solution of these problems.

2. Criticality

In this section we illustrate the difference between criti-

cal slowing down and temporal complexity. Let us consider

a generic network of N units that have to make a choice be-

tween the state A and the state B. To make the model more

attractive let us assume that the state A refers to altruism and

the state B to selfishness. The concentration of nodes in A

is denoted by the symbol p and the concentration of nodes

in the state B by the symbol q. We set the normalization

condition

p + q = 1. (1)

The A to B transition rate is γ and the B to A transition rate is

ω, thereby yielding

ṗ = −γ p + ωq (2)

and

q̇ = −ωp + γ q, (3)

so as to fit the normalization condition of Eq. (1) at all times.

From Eq. (1) we get q = 1 − p, which plugged in Eq. (2) yields

ṗ = −(γ + ω)p + ω, (4)

leading us to conclude that if we set the condition ω = 0, the

system naturally evolves toward the equilibrium condition

p = 0, implying the extinction of altruism.

A much less pessimistic condition is possible if we make

the assumption that the behavior of the units of the network

is influenced by imitation [16]. In this case

ω = K p. (5)

A small concentration of individuals in the state A may

produce significant effects on the network if the imitation

strength, here denoted by the symbol K, is very large. Actu-

ally, by plugging Eq. (5) into Eq. (4) we get

ṗ = −(γ − K)p − K p2, (6)

which, for K > γ admits the new equilibrium condition

peq = 1 − γ

K
, (7)

while the condition peq = 0 becomes unstable. We are in the

presence of a phase transition with the critical value of K, Kc,

being

Kc = γ . (8)

2.1. Critical slowing down

At criticality the regression to equilibrium from a small

out of equilibrium condition p0 � 1 is given by

p(t) = p0

1 + γ p0t
. (9)

The lifetime of this non-equilibrium condition is infinitely

large. This is the critical slowing down pointed out in the work

of [5].

2.2. Temporal complexity

To understand its connection with temporal complexity we

have to keep in mind that Eq. (6) is an ideal condition imply-

ing that N = ∞. In the more realistic case of a network with

a finite number of interacting units, we have to take into ac-

count that the number of neighbors of a given unit is not ex-

actly determined by p. The dynamics of the network is es-

tablished as follows. At each time step we have to assess if a

given unit is either in the state A or in the state B. If it is in the

state A, the transition from A to B is determined by the rate γ ,

independent of the concentrations p and q. If it is in the state

B the probability of making a transition to A, �B → A, namely

the counterpart of ω of Eq. (5), is given by

�B→A = K
MA

M
, (10)

where M is the total number of nearest neighbors of the unit

under consideration and MA is the number of them in the al-

truist state. It is evident that with a finite number of units
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