
Chaos, Solitons and Fractals 78 (2015) 33–38

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Periodic solutions in reaction–diffusion equations with

time delay

Li Li a,b,∗

a Key Laboratory of Computational Intelligence and Chinese Information, Processing of Ministry of Education, Shanxi University,

Taiyuan 030006, People’s Republic of China
b School of Computer and Information Technology, Shanxi University, Taiyuan 030006, People’s Republic of China

a r t i c l e i n f o

Article history:

Received 11 May 2015

Accepted 3 July 2015

Available online 25 July 2015

PACS:

87.23.Cc

82.40.Bj

05.45.Pq

Keywords:

Diffusion system

Time delay

Periodic solution

Fredholm mapping

Coincidence degree

a b s t r a c t

Spatial diffusion and time delay are two main factors in biological and chemical systems. How-

ever, the combined effects of them on diffusion systems are not well studied. As a result, we

investigate a nonlinear diffusion system with delay and obtain the existence of the periodic

solutions using coincidence degree theory. Moreover, two numerical examples confirm our

theoretical results. The obtained results can also be applied in other related fields.
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1. Introduction

Consider the diffusion system of the form

∂u(r, t)

∂t
= D�u(r, t) + f (u(r, t)), t ≥ 0, r ∈ � ⊂ Rm, (1)

where u ∈ Rn, D = diag(d1, d2, . . . , dn), di > 0, i = 1, 2, . . . , n,

and � is the Laplace operator, that is,

�u(r, t) =
(

m∑
k=1

∂2u1(r, t)

∂r2
k

, . . . ,

m∑
k=1

∂2un(r, t)

∂r2
k

)T

.

Let θ = (θ1, θ2, · · ·, θm) be a united vector and c be a con-

stant, then u(r, t) = ϕ(r · θ + ct) is called as a traveling wave

solution of (1). Thus, we have the ordinary differential system

Dϕ′′(ξ) − cϕ′(ξ) + f (ϕ(ξ)) = 0. (2)
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The existence and stability of traveling wave solutions for

system (1) have been extensively studied, see more details in

Refs. [1–10]. In [11], Schaaf first systematically studied two

scalar reaction–diffusion equations with a single discrete de-

lay. Recently, the existence of traveling wave solutions for

delay diffusion system has attracted considerable attention

[12–18]. However, most papers only considered the existence

of traveling wavefronts [19–21].

Now we consider the diffusion system of the following

form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(r, t)

∂t
= d1

m∑
k=1

∂2u(r, t)

∂r2
k+ f1(u(r, t), v(r, t), u(r, t − l1), v(r, t − l2)),

∂v(r, t)

∂t
= d2

m∑
k=1

∂2v(r, t)

∂r2
k+ f2(u(r, t), v(r, t), u(r, t − l3), v(r, t − l4)),

(3)

where t ≥ 0, r ∈ �⊂ Rm, d1 > 0, d2 > 0 are the diffusion coeffi-

cients. Let u(r, t) = ϕ(r · θ + c1t) and v(r, t) = φ(r · θ + c2t).
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We have that:⎧⎪⎨
⎪⎩

d1ϕ
′′(ξ) − c1ϕ

′(ξ)
+ f1(ϕ(ξ), φ(ξ), ϕ(ξ − c1l1), φ(ξ − c2l2)) = 0,

d2φ
′′(ξ) − c2φ

′(ξ)
+ f2(ϕ(ξ), φ(ξ), ϕ(ξ − c1l3), φ(ξ − c2l4)) = 0.

(4)

When the diffusion coefficients d1 and d2 and delays l1, l2,

l3 and l4 are T-periodic functions, Eq. (4) can be written

as:⎧⎪⎨
⎪⎩

x′′(t) + a(t)x′(t)
− f1(t, x(t), y(t), x(t − τ1(t)), y(t − σ1(t))) = 0,

y′′(t) + b(t)y′(t)
− f2(t, x(t), y(t), x(t − τ2(t)), y(t − σ2(t))) = 0,

(5)

where a, b, τ 1, τ 2, σ 1, σ 2, f1 and f2 are T-periodic functions.

In this case, if (5) has a T-periodic solution (x(t), y(t)), we

have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′(t) = ∫ t+T

t

exp(
∫ s

t a(u)du)
exp(

∫ T
0 a(u)du)−1

× f1(s, x(s), y(s), x(s − τ1(s)), y(s − σ1(s)))ds,

y′(t) = ∫ t+T

t

exp(
∫ s

t b(u)du)
exp (

∫ T
0 b(u)du)−1

× f2(s, x(s), y(s), x(s − τ2(s)), y(s − σ2(s)))ds.

(6)

In fact, system (3) has a traveling wave solution if, and

only if system (6) has a T-periodic solution. As a result, the

purpose of this paper is to establish the condition for the ex-

istence of at least one T-periodic solution of system (6), by

using continuation theorem [22].

2. Some preparation

In this section, we will give some preparations which

are crucial in the proof of our theorem. For the sake of dis-

cussion, in what follows we will introduce this theorem as

follows.

Let X and Y be two real Banach spaces, L: domL ⊂ X → Y be

a Fredholm mapping of index zero, and P : X → X, Q : Y → Y, be

continuous projections such that Im P = KerL, KerQ = Im L,

and X = KerL ⊕ KerP, Y = Im L ⊕ Im Q. Denote the restriction

of L to domL ∩ KerP as by Lp, Kp : Im L → domL ∩ KerP as the

inverse of Lp, and an isomorphism of ImQ onto KerL by J :

ImQ → KerL.

Lemma 1 ([22]). Let �⊂ X be an open bounded set and let N :

X → Y be a continuous operator which is L-compact on � (i.e.,

QN : � → Y and Kp(I − Q)N : � → X are compact). Assume

(a) Lx 
= λNx for every (x, λ) ∈ (domL\Ker ∩ ∂�) × (0, 1);
(b) Nx 
∈ ImL for every x ∈ KerL ∩ ∂�;

(c) deg (QN|ker L,� ∩ ker L, 0) 
= 0.

Then the equation Lx = Nx has at least one solution in

domL ∩ �.

Throughout this paper, we will discuss the prob-

lem in several classical spaces C(R, R), C1(R, R). For

the x ∈ C(R, R), where x = (x1, x2)
T , we use the

norm ‖xi‖∞ = maxt∈[0,T ]

∣∣xi(t)
∣∣ (i = 1, 2) and ‖x‖∞ =

max{‖x1‖∞,‖x2‖∞}. Moreover, we will adopt the notation

|x|k = (
∫ T

0

∣∣x(t)
∣∣k

dt)1/k.

Banach space X = {x| x ∈ C(R, R), x(t) = x(t + T), for all

t ∈ R} has the norm ‖x‖X = ‖x‖∞, and Y is also a real Banach

space.

Now we can define L as the linear operator from domL ⊂ X

to Y with

domL = {x| x ∈ X, x
′ ∈ C(R, R) and x(0) = 0}

and

L(x) = (x
′
), x = (x1, x2)

T ∈ domL.

Define the nonlinear operator N: X → Y by

N(x) =
∫ t+T

t

G(t, s) f (s, x1(s), x2(s), x1(s − τ(s)),

x2(s − σ(s)))ds,

where G(t, s) = (G1(t,s)
G2(t,s)

, ) with

G1(t, s) =
exp

(∫ s

t a(u)du
)

exp

(∫ T

0 a(u)du

)
− 1

,

G2(t, s) =
exp

(∫ s

t b(u)du
)

exp

(∫ T

0 b(u)du

)
− 1

,

and f = ( f1
f2

, ) τ = (τ1
τ2

, ) σ = (σ1
σ2

) and D=(D1
D2

.)

It is clear to see that there exists a vector constant M > 0

(M ∈ R2) such that for any t ∈ R,

G(t, s) ≤ M.

Then, we can consider the operator equation

L(x) = λN(x). (7)

It is trivial to see that L is a bounded linear operator with

KerL = {x ∈ domL : x(t) = d, t ∈ R, d ∈ R2},

Im L =
{

y ∈ Y :

∫ t+T

t

y(s)ds = 0

}
,

and

dim KerL = 2 = co dim Im L.

Consequently, it follows that L is a Fredholm mapping of in-

dex zero.

Define P: X → X and Q: Y → Y respectively as

Px = x(0), x ∈ X,

and

Qy = 1

T

∫ T

0

y(s)ds, y ∈ Y.

It is not difficult to show that P and Q are continuous projec-

tors such that

Im P = KerL, Im L = KerQ = Im (I − Q ).

Furthermore, the generalized inverse (to L) KP: Im L →
domL ∩ KerP exists and has the following form:

Kp(y) =
∫ t

0

y(s)ds.

In fact, for y ∈ ImL, we have

(LKp)y(t) = [(Kpy)(t)]
′ = y(t).
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