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a b s t r a c t

Fractal properties of real world objects are commonly examined in digital images. Digital im-

ages are discrete representations of objects or scenes and are unavoidably contaminated with

noise disturbing the representation of the captured objects. We evaluate the noise depen-

dency of frequently applied algorithms for the calculation of the fractal dimension in digital

images. Three mathematically defined fractals (Koch Curve, Sierpinski Gasket, Menger Car-

pet), representative for low, middle and high values of the fractal dimension, together with an

experimentally obtained fractal structure were contaminated with well-defined levels of arti-

ficial noise. The Box-Counting Dimension, the Correlation Dimension and the rather unknown

Tug-of-War Dimension were calculated for the data sets in order to estimate the fractal di-

mensionality under the presence of accumulated noise. We found that noise has a significant

influence on the computed fractal dimensions (relative increases up to 20%) and that the in-

fluence is sensitive to the applied algorithm and the space filling characteristics of the inves-

tigated fractal structures. The similarities of the effect of noise on experimental and artificial

fractals confirm the reliability of the obtained results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of fractal geometry, introduced by Benoit B.

Mandelbrot in 1983, has become very useful for estimating

the complexity of natural objects. Fractal geometry becomes

apparent in natural and artificial structures in a wide range

of environments and forms. The fractal dimension of an ob-

ject is an important measure of the intrinsic dimensionality.

The fractal dimension coincides with the irregularity and the

roughness of a self-similar object, and indicates how much

space is filled by the object.

The interpretation of real objects as fractals has proved

to be of great interest in texture analysis, segmentation and

the analysis of digital images in a broad field of different

applications [1]. The determination of fractal dimensions
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of medical images, especially for cancer, have been carried

out very successfully, e.g. the investigation of leukemic cells

[2], dysplastic lesions of cervix uteri [3], gallbladder adeno-

carcinomas [4], retinoid-induced differentiation of cancer

cells [5], nuclear pleomorphism [6], pigmented skin lesions

[7,8], malignant melanoma [9], mammographic density of

breast carcinoma [10], MCF-7 breast cancer cells [11], breast

epithelial cell nuclei [12], fractal growth patterns of breast

cancer cells [13] or the invasiveness of mouse melanoma

cells [14–18].

Although extensive research work has been carried out

concerning calculations and interpretations of fractal dimen-

sions, little attention has been paid to practical limitations of

digital images. A digital image is a discrete, two dimensional

representation of a three dimensional object with a single

image pixel as the smallest entity. Digital images can be

obtained from digital cameras, video cameras, microscopes,

scanning devices or sophisticated devices using magnetic
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spin resonance or fluorescence tracer methods. These de-

vices mainly include optical and electronic techniques and

therefore, several sources of noise can emerge. Examples are

Poisson or Bose–Einstein distributed light sources of a micro-

scope and Johnson- or Shotnoise of any electronic device. Ad-

ditional errors can occur during image capturing, transmis-

sion, compression or image processing. Thus, it is mandatory

to keep the signal to noise ratio as high as possible in order

to ensure a high image quality. Noise may lead to a false or

incomplete reproduction of the real object in a digital image.

This means that pixels are not correctly associated with the

real object or the background. Some background pixels may

appear as object pixels or vice versa. In this sense, digital im-

ages from real objects can be interpreted as being measure-

ments or estimations.

Furthermore, the representation of natural objects in a

digital form is limited to a finite range of orders of magni-

tude. The size of a single pixel of an image is the lower limit

and the size of the image itself is the upper limit. Hence, the

calculation of the fractal dimension is restricted to a small

range of magnitudes and the theoretical infinitesimal limit

cannot be calculated because of the finite size of a single im-

age pixel.

Since neither the Hausdorff measure nor the Hausdorff

dimension are compatible with digital images, several more

suitable methods, such as the very popular Box-Counting

Dimension or the Correlation Dimension, are common prac-

tice in various research fields (e.g. health science, geography

or geophysics). Standard approaches are typically based

on power-law relationships between measured values and

scaling variables. However, a crucial point is the actually

implemented scanning (or raster-) technique which defines

how the measured values are extracted from digital images.

We carefully selected the Box-Counting Dimension, the

Correlation Dimension and the rather unknown Tug-of-War

approach because each method corresponds to a unique

scanning technique.

In order to evaluate the influence of noise on the cal-

culation of the fractal dimension in digital images our

contribution in this study is two-fold. First, we prepared

four image sequences comprising of three mathematically

well defined fractals (with low, middle and high theoretical

fractal dimensions) and one experimentally gained fractal

structure with increasing levels of artificially added noise.

This simulates the ubiquitous condition that digital images

are always contaminated with more or less noise. Second, we

calculated the fractal dimensions for each image sequence

by means of different algorithms. Here, we focus on the

Box-Counting Dimension, the Correlation Dimension and

the Tug-of-War approach.

This paper is structured in the following way: Section 2

describes the preparation of the data sets, including the gen-

eration of theoretical fractals and the process of adding noise.

In Section 3 we give an overview on the different approaches

to calculate the fractal dimension. The results are revealed in

Section 4 and their implications are discussed in Section 5.

2. Data preparation

In order to evaluate noise effects as inherent proper-

ties of digital images we prepared four image sequences,

comprising of three artificial fractals (Menger Carpet,

Sieprinski Gasket, Koch Curve) and one experimentally ob-

tained digital image of a neuronal cell. Three mathematical

fractals are representative for low, middle and high values of

the fractal dimension with theoretical values of 1.26, 1.58 and

1.89, respectively. Artificial noise was added to the images in

discrete steps in order to prepare four image-sequences, each

containing 100 images with increasing levels of noise (see,

Fig. 1).

2.1. Artificial fractals

The Menger Carpet, the Sierpinski Gasket and the Koch

Curve were generated by a deterministic iterated function

system [19] (IFS). The Menger Carpet is the two-dimensional

analogue of the three-dimensional Menger Sponge and is

also designated as Sierpinski Carpet [20]. Two-dimensional

digital images of these fractals were iteratively constructed

with a resolution of 1024 × 1024 or 1458 × 1458 pixels. The

iterations were stopped as the fine details of the fractals con-

verged toward the single pixel resolution. Further iterations

would have caused artificial effects such as merging together

distinct lines. The actual number of iterates was 8 for the Sier-

pinski Gasket, 5 for the Menger Carpet and 8 for the Koch

Curve. The artificial noise-free fractals are shown in the first

column in Fig. 1(a)–(c).

2.2. Digital image of a neuronal cell

It is well known that the morphology of neuronal cells

show fractal properties [21] and therefore, we decided to

include such an image, representative for natural fractal-

like objects. A representative sample image of a neuronal

astrocyte cell, showing the branched structure of dendrites

was taken from the CCDB data base (http://ccdb.ucsd.edu/

CCDBWebSite/index.html). This sample image was taken

with a confocal microscope (Bio-Rad Microscience Ltd, Bio-

Rad Radiance 2000, Hemel Hempstead) and had a resolution

of 1024 × 1024 pixels. The original image in 8-bit grey level

format was segmented by using the image processing soft-

ware IQM [22] (see, e.g. http://sourceforge.net/projects/iqm).

2.3. Generation of noise

For each fractal a series of images with different levels

of noise, represented by variance values σ 2 in the range

[0, 100], was constructed. We did not simply add randomly

distributed object pixels, e.g. by the application of suitable

blurring operators because a random distributed addition of

object pixels would alter the total number of image pixels

proportionally to the pre-set variance. Hence, the computed

values for fractal dimensions would be increased, simple due

to the accumulation of object pixels. In order to circumvent

this effect, the noise-contaminated images were generated

by holding the total number of object pixels constant [15,18].

Individual object pixels were translocated to new locations

by using a statistical approach. Statistical probabilities define

the translocation distance d, with d ≥ 0, and translocation

angle ϕi ∈ {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}. A Gaus-

sian and a negative exponential distribution were utilized for

the calculation of distances d, and a uniform distribution was
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