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a b s t r a c t

In this paper, modified projective synchronization (MPS) for different fractional-order chaotic

systems with variable time delays is investigated. By using active control method, and analysis

of the error dynamical systems, a suitable controller for achieving the modified projective

synchronization is given. Finally the proposed method illustrated by two examples in two

conditions and performance of proposed method is shown.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, study on the dynamics of fractional-order

differential systems has greatly attracted interest of many

researchers. In the last two decades, fractional calculus has

been applied in an increasing number of fields. Compared

with the classical integer order models, fractional-order

derivatives provide an excellent instrument for the descrip-

tion of memory and hereditary properties of various materi-

als and processes. With the introduction of fractional deriva-

tives, it was proved that many fractional-order differential

systems behave chaotically, such as fractional-order Chuas

circuit [1], fractional-order Rössler system [2], fractional-

order Chen system [3] and fractional-order Lü system [4] and

fractional-order Lorenz system [5]. There are many investi-

gations on the synchronization of two identical or different

fractional-ordered chaotic systems without delays [6–10].

The control and synchronization of time-delay systems

have received increasing attentions [11–14]. However, there
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are few results in the synchronization of a fractional-order

chaotic systems with time delay [15] also there is not any

specific study on synchronization of time-delay fractional-

order chaotic systems with time-varying time delay.

Delay differential equation (DDE) is a differential equa-

tion in which the derivative of the function at any time de-

pends on the solution at previous time. Introduction of delay

in the model enriches its dynamics and allows a precise de-

scription of the real life phenomena. DDEs have proven useful

in control systems [16], lasers, traffic models [17], metal cut-

ting, epidemiology, neuroscience, population dynamics [18].

In DDE one has to provide history of the system over the de-

lay interval [−τ, 0] as the initial condition. Due to this reason

delay systems are infinite dimensional in nature. Baleanu and

co-workers studied inclusion of delay in the fractional vari-

ational principles [19] and have given existence and unique-

ness theorem for delay differential equation arising in this

scheme [20,21]. Because of the infinite dimensionality the

DDEs are difficult to analyze analytically [22] and the numer-

ical solutions therefore, play an important role.

There are many types of synchronization in chaotic

systems [23,24]. Recently, a more general form of synchro-

nization scheme, called modified projective synchronization,

has been investigated [25,26], where the responses of the
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synchronized dynamical states synchronize up to a constant

scaling matrix. This kind of synchronization is more general

kind of synchronization in chaotic systems, which contains

other synchronization type, such as projective synchroniza-

tion, complete synchronization and anti-synchronization.

There are some studies in modified projective synchro-

nization for fractional-order chaotic systems [27], but there

are few studies on modified projective synchronization

for fractional-order chaotic systems with time delays until

now. In this paper, we consider the modified projective

synchronization for fractional-order chaotic systems with

time delays in drive and response system where this time

delays can be as the same or different. Also we suppose that

time delays are stochastic function of time which means

that at any time fractional derivate of drive and response

systems depends on its solution at previous time and this

time is not fixed time and changes stochastically. In special

cases of modified projective synchronization, we show the

synchronization of two fractional-order chaotic systems.

This paper is organized as follows. We begin with

the preliminary relations in Section 2, where the defi-

nitions of fractional-order operator, stability condition of

fractional-order systems, numerical algorithm for simulation

of fractional-order differential equations and modified pro-

jective synchronization of chaotic systems are established.

Section 3 presents dynamics and parameters of two kind of

fractional-order chaotic systems with time delay, which we

use in our simulations. Three examples are provided to val-

idate the theoretical results and to illustrate the application

of the proposed strategy in Section 4. Finally, the main con-

clusions of the work are presented in Section 5.

2. Preliminaries

2.1. Fractional differential operator definitions

To discuss fractional chaotic systems, we usually need to

solve fractional-order differential equations. For solving the

fractional differential equations fractional operator defined

in three more commonly definitions: Grünwald–Letnikov

(GL) definition, Riemann–Liouville (RL) definition and Caputo

definition. The GL definition of non-integer is:

Dα
t f (t) = lim

h→0
h−α

(t−a)/h∑
j=0

(−1) j

(
α

j

)
f (t − jh) (1)

where (αj) = α(α−1)···(α− j+1)
j!

Captuo definition is given as below:

dα

dtα
f (t) = 1

�(n − α)

∫ t

0

f (n)(τ )

(t − τ)n−α+1
dτ (2)

The best-known RL definition of fractional-order, which is

described by:

dα

dtα
f (t) = 1

�(n − α)

dα

dtα

∫ t

0

f (n)(τ )

(t − τ)n−α+1
dτ (3)

where n is an integer such that n − 1 < α < n, �(.) is the

Gamma function.

For the function f(t) having m-order continuous deriva-

tives with t ≥ 0, the Laplace transform of the Caputo frac-

tional derivative is given as

Fig. 1. Stability region of the fractional-order system (5).

L[Dα f (t), s] = sαF(s) −
m−1∑
k=0

sα−k−1 f (k)(0) (4)

where F(s) is the Laplace transform of f(t), and m = �α�, i.e.,

m is the first integer which is not less than α. Obviously,

the initial conditions for the fractional differential equation

with Caputo derivative are in the same form as those for the

integer-order differential equation which have real physical

meanings.

2.2. Stability theorem of fractional-order systems

2.2.1. General stability theorem of fractional-order systems

We review some important results of the stability theo-

rems for fractional-order systems here. Consider the follow-

ing linear system of fractional differential equation [11]

Dαx = Ax, x(0) = x0 (5)

where x ∈ Rn, A ∈ Rn × n, α = [α1, α2, · · · , αi, · · · , αn]T , (0 <

αi ≤ 1) for (i = 1, 2, · · · , n) indicates the fractional orders.

Case 1. When α1 = α2 = · · · = αn = α, then the au-

tonomous fractional-order system (5) is commensurate and

is asymptotically stable if |arg(spec(A))| > απ /2. In this case

the components of the state decay towards 0 like t−α . In case

of α = 1, the above stability agrees with the well-known re-

sults for ordinary linear differential systems. Fig. 1 shows the

stability region of above fractional-order system.

Case 2. When αis for i = 1, 2, · · · , n are different, then the

autonomous fractional-order system (5) is in-commensurate

and suppose that αiare rational numbers between 0 and 1.

Let M is the least common multiple of the dominator ui of α′
i
s,

where i = vi/ui, rem(ui, vi) = 1, ui, vi ∈ N, for i = 1, 2, · · · , n.

Then system (5) is asymptotically stable if all the roots of the

equation det(diag (M1, M2, · · · , Mn)A) = 0 satisfy |arg(λ)| >

π /2M. In what follows, we will use the above stability theo-

rem to choose sufficient control parameters for the synchro-

nization between different fractional-order systems.

2.2.2. Stability condition for fractional differential equations

with time delays
For below n-dimensional linear fractional differential

system with multiple time delays, the stability condition
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