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a b s t r a c t

This paper is concerned with the problem of limit cycle bifurcation near a homoclinic or hete-

roclinic loop for non-smooth systems. By establishing the Poincaré map, some stability criteria

are derived for a homoclinic loop in the non-smooth system under study. Furthermore, based

on the theory of stability-changing of a homoclinic loop, a new approach is proposed to find

limit cycles for the non-smooth system. Finally, several examples are provided to illustrate the

obtained results.
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1. Introduction

Recently, theoretical research and practical applications

of piecewise smooth (PS for short) systems have attracted

many researchers’ attentions from a variety of disciplines in-

cluding control theory, electronics, physics, medicine as well

as biology, see [2,3,9] and references therein. PS systems can

exhibit some complicated phenomena [3,9,21], such as slid-

ing homoclinic bifurcation and sliding-crossing bifurcation,

while these are forbidden in smooth systems.

As for PS systems, lots of research is focused on the the-

ory of limit cycle bifurcations [1,4,8,13,15–17,23]. The authors

in [4,13] studied the problem of Hopf bifurcation for non-

smooth planar systems and it is found in [13] that two limit

cycles can appear near a focus of either FF, FP, or PP type (see
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Theorem 3.3 of [13]) for piecewise linear systems. Further-

more, via the direct computation, it was shown that piece-

wise linear systems with two real saddles can have two limit

cycles [1], and this conclusion will be confirmed by another

method established in this paper, see Example 5.2. Some in-

vestigations about the number of limit cycles on piecewise

linear systems can be seen in [15,16] and references therein.

Recently, similar to the smooth case [18], by studying a per-

turbed piecewise Hamiltonian system, the authors in [17]

have derived a formula for the generalized Melnikov function

which can be used to study the number of limit cycles bifur-

cated from periodic orbits. Based on this method, local and

global bifurcations for a class of PS systems were discussed

in [23].

For a smooth planar system

ẋ = f0(x, y), ẏ = g0(x, y), (1.1)

some criteria for the stability of a homoclinic loop of it can be

found in Theorem 3.3 in [5], Theorems 4.2.2 and 4.2.3 in [10],

or Theorem 1.1 in [11], which can be stated as follows.

http://dx.doi.org/10.1016/j.chaos.2015.07.015

0960-0779/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.chaos.2015.07.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2015.07.015&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:mahan@shnu.edu.cn
http://dx.doi.org/10.1016/j.chaos.2015.07.015


108 Y. Xiong, M. Han / Chaos, Solitons and Fractals 78 (2015) 107–117

(1) Convex case (2) Concave case

Fig. 1. Two possible cases of the homoclinic loop L.

Theorem 1.1. Suppose that system (1.1) has an oriented clock-

wise homoclinic loop L0 passing through a hyperbolic saddle S.

Let

μ1 = ( f0x + g0y)(S), μ2 =
∮

L0

( f0x + g0y)dt, μ3 = R1(S),

where R1(S) denotes the first saddle quantity of S. Then

(i) The loop L0 is orbitally stable (unstable) as μ1 < 0( > 0).
(ii) If μ1 = 0, then L0 is orbitally stable (unstable) as μ2 <

0( > 0).
(iii) Let μ1 = 0,μ2 = 0,μ3 �= 0. Then L0 is orbitally stable if

(a) μ3 > 0 and L0 is convex, or (b) μ3 < 0 and L0 is

concave; otherwise, L0 is unstable.

We remark that in Theorem 1.1, if

∂( f0, g0)

∂(x, y)

∣∣∣∣
(x,y)=S

=
(

λ 0
0 −λ

)
, λ > 0,

then

R1(S) = 1

2λ

[
f0xxy + g0xyy − 1

λ
( f0xx f0xy − g0xyg0yy)

]∣∣∣
(x,y)=S

.

As can be seen from [10,12,22], μi defined in Theorem 1.1

can be used to study limit cycle bifurcations of the perturbed

system of (1.1) near L0. Meanwhile, some sufficient condi-

tions presented in section 2 of Chapter 4 in [10] can also be

utilized to obtain one, two or three limit cycles. Inspired by

the above discussion, we aim to investigate the stability of a

homoclinic and research the problem of limit cycle bifurca-

tion near a homoclinic or heteroclinic loop (see Fig. 1 and 5)

for PS systems.

The remainder of this paper is organized as follows. In

Section 2, we mainly consider the stability of a homoclinic

loop in a PS system and provide some criteria for it (see

Theorem 2.1). In Section 3, we study the limit cycle bifurca-

tions near a homoclinic loop for PS systems; we present a suf-

ficient condition for a non-smooth system to have a homo-

clinic loop (see Theorem 3.1) and to have 2 or 3 limit cycles

near a homoclinic loop (see Theorem 3.2). In Section 4, we

investigate the bifurcation of limit cycles near a heteroclinic

loop, and give the corresponding sufficient conditions with k

(k = 1, 2, 3, or 4) limit cycles (see Theorem 4.1). In Section 5,

two concrete examples are studied. Especially, it is proved

that piecewise linear systems with two real saddles can have

two limit cycles near a heteroclinic loop.

Fig. 2. Poincaré mape for the convex case near L.

2. Stability of a homoclinic loop

In this section, we mainly study the stability of a homo-

clinic loop in a PS system by establishing a Poincaré map near

the loop.

Consider a piecewise system of the form

ẋ = f (x, y), ẏ = g(x, y), (2.1)

where

f (x, y) =
{

f +(x, y), x ≥ 0,

f −(x, y), x < 0,
g(x, y) =

{
g+(x, y), x ≥ 0,

g−(x, y), x < 0,

(2.2)

with f±, g± ∈ C∞. Then, these functions define the following

two C∞ systems{
ẋ = f +(x, y),
ẏ = g+(x, y)

(2.1a)

and{
ẋ = f −(x, y),
ẏ = g−(x, y),

(2.1b)

which are called right and left subsystems of (2.1), respec-

tively, see [13].

Suppose that system (2.1) has a homoclinic loop L = L+ ∪
L−

s ∪ L−
u ∪ S0 with a clockwise orientation, which intersects

the y-axis at points A0 and A1 successively, where S0 ∈ {(x,

y)|x < 0} is a hyperbolic saddle and

L+ = Â0A1, L−
s = Â1S0, L−

u = Ŝ0A0.

Then, one can find two possible cases as shown in Fig. 1.

Let ρ be a sufficiently small positive number. Denoted by

A is a point on the y-axis satisfying A = A1 − an0, where n0 =
(0, 1)T and 0 < −a < ρ in the convex case or 0 < a < ρ in

the concave case. Then, the positive orbit, denoted by γ +
A

, of

(2.1) starting at A intersects the y-axis at points B = A0 + a3n0

and C = A1 − P̃(a3)n0 in turn, where a3 = P̄(a) and A, B, C are

consecutive intersections of γ +
A

with the y-axis, see Fig. 2.

Define P̄(0) = lima→0 P̄(a). Then, the orbit from A to C defines

a map called the Poincaré map or the return map of system

(2.1) near L. The map, denoted by P, satisfies

P(a) = P̃(a3) = (P̃ ◦ P̄)(a), (2.3)

where −ρ < a ≤ 0 (in the convex case) or 0 ≤ a < ρ (in the

concave case), with P(0) = 0. Therefore, using the construc-

tion of P(a), we introduce the following definition.
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