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a b s t r a c t

This paper is devoted to the analytical formula for zero Lyapunov exponent describing the

dynamics of interacting chaotic systems with noise. The deduced analytical prediction is in a

good agreement with the value of zero Lyapunov exponent obtained numerically for two uni-

directionally coupled Rössler oscillators. We have shown that this good agreement is observed

for a wide diapason of the values of the control parameters.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There are no doubts that Lyapunov exponents (LEs) are

very powerful tool used frequently to study the complex dy-

namics of nonlinear systems. The theory and procedures of

Lyapunov exponent calculation have been properly devel-

oped [1–4] and now Lyapunov exponents are used widely

in very different fields of science, including (but not limited

to) physics [5], astronomy [6], medicine [7], economy [8], etc.

Due to their great efficiency Lyapunov exponents are applied

to a large number of complex systems, including spatially ex-

tended ones [9–15]).

Nowadays, among techniques devoted to the Lyapunov

exponent calculation for nonlinear systems two main ap-

proaches may be distinguished generally, namely, (i) the
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estimation of the largest Lyapunov exponents from time se-

ries [4] of the examined system and (ii) the application of the

standard procedures [3,4] based on the numerical calculation

of Lyapunov sums with the help of the system evolution oper-

ator and its linearization. Estimation of the largest Lyapunov

exponent from time series is very important for experiments

(when the evolution operator is unknown) and used widely

for the experimental data, including data of living systems

(see, e.g., [16]). The second approach allows to calculate a

spectrum of Lyapunov exponents but it requires an explicit

form of the evolution operator of the system under study.

The very interesting, important and promising point is the

analytical estimation of Lyapunov exponents. The analytical

formula for the value of Lyapunov exponent can be rather

easily obtained only for the steady-state solutions, namely,

for the fixed points of nonlinear systems with a small num-

ber of degrees of freedom and for the steady-state spatially

homogeneous solutions of the spatially extended systems.

More interestingly, the value of Lyapunov exponent has been
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obtained analytically for simple models of nonlinear oscilla-

tors being under noise [17–20] (typically, in connection with

the problem of synchronization of ensemble of oscillators by

common external noise) as well as for the neural oscillator

models [21–23].

The next step in the use of the Lyapunov exponent ap-

paratus is the problem concerning the analytical description

of LEs for chaotic oscillators. At present time in certain cases

for such systems the analytical approximations of Lyapunov

exponent were obtained, but these approximations remain

valid in a very narrow diapason of the values of the control

parameters [24,25] and do not provide a complete picture of

the LE behavior.

In this paper we report for the first time on the analytical

formula for the so-called zero Lyapunov exponent (ZLE) of

chaotic dynamical systems with noise. ZLE stands out among

the spectrum of LEs which characterize the complex behavior

of chaotic systems. Zero Lyapunov exponent exists necessar-

ily in the LE spectrum of the flow systems characterizing the

evolution of the perturbation along the phase trajectory. For

two coupled flow oscillators (which possesses two zero LEs

in the case without coupling) one of ZLEs diverges from the

zero value with the growth of the coupling strength. In ad-

dition, ZLE corresponds to the leading Lyapunov exponent of

the phase oscillator models [17–20]. It is LE to be the object of

the main interest in the present work. ZLE plays a crucial role

in some relevant circumstances, e.g., in the synchronization

phenomena. In particular, transition of one of ZLEs into the

negative value region is related to the phase synchronization

phenomenon [26,27], although the transition point does not

coincide with the phase synchronization boundary [24,28].

ZLE may also be an indicator of the peculiar regimes of the

system behavior, e.g., the incomplete noise-induced synchro-

nization [29].

In parallel with the coupling strength, noise also influ-

ences on the LEs. Noise is observed in experimental stud-

ies as well as in numerical simulations. Typically, the influ-

ence of noise is crucial for the system dynamics (see e.g., Ref.

[30–33]).

In addition, the certain phenomena take place in sys-

tems with both deterministic (but chaotic) and stochastic

dynamics. Indeed, for the driven periodic oscillator behav-

ior the synchronization is known to be connected with the

saddle-node bifurcation [34]. The same scenario takes place

for chaotic oscillators being in the phase synchronization

regime, although its manifestation is hidden due to the ape-

riodic motion [28,35]. As a consequence, the phenomena ob-

served near the synchronization boundary of periodic os-

cillators whose dynamics is perturbed by noise have been

shown recently to be the same as for the chaotic systems be-

ing close to the phase synchronization onset [25,28,32,36].

Similarly, the noise-induced synchronization and general-

ized synchronization are caused by one and the same mech-

anism, with the difference between them being only in the

driving signal [37]. All findings mentioned above mean that

in certain cases the dynamics of chaotic systems may be

modeled by the behavior of the periodic systems perturbed

by noise. Therefore, the results given in this paper concern-

ing the analytical expression for Lyapunov exponent may be

applicable both for the stochastic and deterministic systems

as well as for the deterministic systems with noise.

2. Theoretical background

To obtain analytical expression for zero Lyapunov ex-

ponent of coupled chaotic oscillators one have to take into

account the following points: (i) under certain conditions

chaotic oscillators may be modeled by a noised periodic

oscillator (see, e.g., [25,37,38]) and (ii) for periodically driven

nonlinear oscillator the boundary of synchronization is

described by the saddle-node bifurcation [34], with the very

same mechanism (but, masked by the irregular dynamics)

taking place both for the periodic oscillator perturbed by the

external noise and for the chaotic system [25,28]. In other

words, to get analytical expression for ZLE, one can consider

a model system describing the behavior of driven periodic

oscillator with noise in the vicinity of the synchronization

onset. From this point of view, the circle map [39–41]

ϕn+1 = ϕn + � + ε f (ϕn) + ξn, mod 2π (1)

being a classical model to study nonlinear phenomena

[42–44] including synchronization [25] and phase locking

[45,46] is the very suitable dynamical system to estimate

the value of ZLE of driven periodical oscillator with noise as

well as the chaotic oscillators. The circle map (1) is known

to describe very precisely the behavior of driven periodical

isochronous oscillator near the synchronization onset, since

it is, in fact, the discretization of Adler’s equation [47] or

truncated equation [34,48] deduced in the framework of the

complex amplitude method. Tangential bifurcation taking

place in the circle map (1) without noise corresponds to the

saddle-node bifurcation in the truncated equation and to

the synchronization onset of the driven periodical oscillator

[34], respectively. The added noise term in (1) enhances the

application of the considered map to the noised periodical

oscillators and chaotic systems. In Eq. (1) ϕ ∈ [0, 2π ) is an

angle, parameter ε ≥ 0 is a measure of the strength of non-

linearity, ξ n is a delta-correlated Gaussian noise [〈ξn〉 = 0,

〈ξnξm〉 = Dδ(n − m)], f (ϕ) = sin ϕ. In fact, sin-circle map

(1) describes the noised dynamical oscillators driven by an

external force whose frequency and amplitude are described

by the dimensionless parameters � and ε, respectively.

The Lyapunov exponent �0 of circle map (it corresponds

to the zero Lyapunov exponent of the coupled flow systems)

is

�0 = lim
n→∞

1

n

n−1∑
i=0

ln |1 + ε f ′(ϕi)|, (2)

where {ϕn} is the time sequence of system (1). Having based

on the ergodicity of the examined process and taken into ac-

count 2π-periodicity, we can obtain

�0 =
∫ 2π

0

ρi(ϕ) ln |1 + ε f ′(ϕ)| dϕ, (3)

where

ρi(ϕ) = ρi(ϕ + 2π) (4)

is the stationary probability density for ϕ-variable.

Having supposed that ϕ is changed per one iteration in-

significantly, we consider (ϕn+1 − ϕn) as the time derivative

ϕ̇. Due to the stochastic term in (1) we must consider the

stochastic differential equation (SDE)

d
 = (� + ε sin 
) dt + dW, (5)
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