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a  b  s  t  r  a  c  t

In  current  work,  the  ionic  transport  limitations  in  the  Li-ion  battery  liquid  electrolyte  with  separator  are
studied  by  a  finite  element  method.  This  theoretical  approach  is  based  on  the  Nernst–Planck  equation.
It  is  shown  that  instead  of  solving  coupled  PDE  system  for  concentration  and  potential,  it  is  sufficient  to
calculate  only  the  concentration  profile  in a  three-dimensional  (3D) structure  to  obtain  a  full  descrip-
tion  of the  diffusion–migration  ionic  transport  in  the  electrolyte  in  the  steady-state.  Subsequently,  the
overpotential  and  electric  field  can  be  calculated  by  using  the  provided  equations.  It  was  found  that  diffu-
sion and  migration  overpotentials  are  equal  in  the  steady-state.  Consequently,  two  algorithms  exploiting
electrolyte  simulations  are  proposed  and  successfully  used  to  calculate  the  limiting  current  for  the  sim-
ulated battery  system.  In the  present  study  a  single  perforated  layer  of  the  separator  is  inserted  into  the
electrolyte  and  the  simulations  are  carried  out by  increasing  the complexity  of  the  membrane  holes.  The
ionic transportation  dependence  on  the  pore  shape  was  found  to  be local  and  limited  by the  spatial  area
around the  perforated  separator.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Li-ion batteries (LIB) and associated technologies are considered
as critical element of the future energy-efficient economy. Improv-
ing the performance of LIB is highly important for many fields,
including electronics, remote and automotive applications. It is
known that the energy losses in Li-ion batteries are substantial due
to the limited Li+ ionic conductivity of the electrolyte [1,2]. There-
fore the overall battery performance is negatively influenced by a
low ionic conductivity. Furthermore, the ionic conductivity of the
electrolyte is strongly influenced by the properties of the separator.
Porous separators have a complicated structure, consisting of inter-
connected system of channels [3].  Direct mathematical modeling
of 3D porous structures is computationally demanding, thus tradi-
tionally, porous electrode and electrolyte structures are modeled
by macroscopic homogeneous mathematical models [4–7]. Mate-
rial parameters, like effective diffusion coefficients and effective
conductivities are calculated, using Bruggeman relations [8]. How-
ever, nowadays fast advances in computational technology make
it possible to perform direct simulations of the 3D microstructures
and to study this kind of complicated structures.
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The effects of spherical particle arrangements and size distribu-
tion in electrodes on the battery performance have been studied
in [9].  The spherical particle approximation was used in [10] to
simulate separators. However, such spherical particle approxima-
tion for the active material in connection to the electrolyte is often
insufficient as the structure of the porous separator is much more
complex. Porous separators like Celgard 2400, which consist of long
thin channels (see [11]), are obviously not an isotropic material
since ions can move through the channel only in one direction. Thus,
modeling the ionic transport by using porous medium theories may
become inaccurate.

Ionic transport in the electrolyte consists of two components:
migration and diffusion. When ionic transport limitations are stud-
ied by using alternating current (see e.g. [10,12]) the diffusion part
in the transport process is not accounted for. However as shown
in [1,13],  diffusion limitations dominate the direct current perfor-
mance of the ionic conductor and must therefore be taken into
account.

In the current work, ionic transport through the electrolyte-
separator system is studied. The effect of the separator is evaluated
by forcing the system to run at limiting currents. When a lim-
iting current is applied to the system, zero concentration values
are expected near the surface of one of the electrodes. However,
currently available mathematical methods for simulating battery
systems under these conditions are difficult to use. If the cou-
pled system of Partial Differential Equations (PDEs) with respect to
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concentrations and electric field is solved numerically and the cur-
rent specified in boundary conditions exceeds the limiting current,
then the concentrations may  go out of the physical range, creat-
ing numerical singularities and interrupting the calculations. The
accuracy of the calculated overpotential may  be low due to loga-
rithmic dependence on the Li+ concentration. However, as shown
in [1],  it is possible to simulate the ionic transport and calculate the
concentration profile, overpotential and electric field in the elec-
trolyte for a homogeneous one-dimensional (1D) system by solving
only the diffusion equation for the electrolyte. The electric field and
the overpotential are derived from it, making it easy to simulate
the electrolyte behavior near the limiting current. However, in [1],
the mathematical model is not taking into account the presence of
a separator and many other factors, influencing 3D movement of
the ions in the electrolyte; the ions are moving directly from one
electrode to the other.

In the current work, the theoretical approach proposed in [1] is
extended to 3D, systems consisting of a separator and electrolyte;
a method is presented for calculating the electric field and over-
potential in the binary electrolyte under steady-state (dis)charging
conditions of the battery. This approach allows considerable sim-
plifications and may  speed up the mathematical modeling of the
electrolytes of Li-ion batteries and makes it possible to calculate
the limiting (dis)charging currents in the simulations more accu-
rate. The developed method is applied to study the fundamental
effects of the model separator to the ionic transport in 1.5 M LiPF6
liquid electrolyte by evaluating the limiting current of the battery
and the diffusion coefficients of the electrolyte ions.

2. Theory

2.1. General diffusion–migration problem

Consider the volume filled with electrolyte and denote it as
G ⊂ R3. Denote the boundaries of the electrolyte as � = ∂G ⊂ R3 and
assume that the (outer) normal vector n of unit length is defined in
each point of � . Consider a binary electrolyte, for example, LiPF6
and denote the type of ions according to index j where j = 1 or j = 2
for the positive (Li+) and negative (e.g. PF−

6 ) ions, correspondingly.
The concentration of the ions in the electrolyte is denoted as cj(r,t)
[mol m−3] and the total flux density [mol m−2 s−1] for each type of
ion follows the Nernst–Plank equation, according to [14]

J j = J j(r, t) = −Dj∇cj(r, t) + F

RT
Djzjcj(r, t)E(r, t) (1)

where E(r, t) = − ∇ ϕ(r, t) is the electric field [V m−1], ϕ(r) is the
electric potential [V], Dj are the diffusion coefficients [m2 s−1] and
zj are the valence states (z1 = −z2 = 1). It is also assumed that the nor-
mal  component of the flux density of Li+ ions into G is defined in
each point on the boundary, according to n · J1(r, t)

∣∣
r ∈ �

= i(r, t)/F ,
where i(r,t) is the current density passing the electrode–electrolyte
interface [A m−2]; for negative ions the corresponding bound-
ary condition is blocking, i.e. n · J1(r, t)

∣∣
r ∈ �

= 0. Denote the bulk

source terms for each type of ions as R = R(r,t) [mol m−3 s−1]. The
initial concentrations for each type of ions will be denoted as c0

j
.

In these notations the general diffusion–migration problem can be
written for j = 1, 2 as

∂cj

∂t
= −∇ · J j + R in G, (2.1)

n · J1(r, t)
∣∣
r ∈ �

= i(r, t)
F

(2.2)

n · J1(r, t)
∣∣
r ∈ �

= 0 (2.3)

cj(r, 0) = c0
j . (2.4)

In the detached form one can write:

∂c1

∂t
= ∇ ·

(
D1∇c1 − F

RT
D1c1E

)
+ R, (3.1)

n ·
(

D1∇c1 − F

RT
D1c1E

)∣∣∣
r ∈ �

= i(r, t)
F

(3.2)

c1(r, 0) = c0
1 (3.3)

and

∂c2

∂t
= ∇ ·

(
D2∇c2 + F

RT
D2c2E

)
+ R, (4.1)

n ·
(

D2∇c2 + F

RT
D2c2E

)∣∣∣
r ∈ �

= 0 (4.2)

c2(r, 0) = c0
2 (4.3)

Assuming local electroneutrality c(r,t) = c1(r,t) = c2(r,t), adding the
Eqs. (3.1) and (4.1) multiplied by D2 and D1 accordingly and doing
the same with Eqs. (3.2) and (4.2) results in

∂c

∂t
= D �c  + R (5.1)

n · ∇c
∣∣
r ∈ �

= i(r, t)
2FD1

(5.2)

c(r, 0) = c0 (5.3)

where D = 2D1D2/(D1 + D2) and c0 = c0
1 = c0

2 is initial concentration
of ions of each type. Assuming local electroneutrality, subtracting
Eqs. (3.1) and (4.1) and multiplying the result with Faraday constant
(F) yields to

(D2 − D1)F∇2c + ∇ ·
[

F2c

RT
(D1 + D2)E

]
= 0 (6.1)

Repeating the procedure on the corresponding boundary condi-
tions Eqs. (3.2) and (4.2) leads to

n ·
[

(D2 − D1)F∇c + F2c

RT
(D1 + D2)E

]∣∣∣∣
r ∈ �

= i(r, t) (6.2)

Eqs. (6.1) and (6.2) can be simplified by introducing the rela-
tion for ionic conductivity �ion = (F2c/RT)(D2 + D1) and defining
j1,2 = (D2 − D1)F ∇ c. Eq. (6) can then be rewritten in a form well
suitable for numerical implementation

−∇ · (�ion∇ϕ − j1,2) = 0, (7.1)

−n · (�ion∇ϕ − j1,2)
∣∣
r ∈ �

= i(r, t). (7.2)

From Eqs. (7.1) and (7.2) it can be concluded, that the electric
potential in the electrolyte can be written in Comsol Multiphysics
[15] in the standard form for conductive media problems, with
concentration-dependent ionic conductivity and external current
density terms leading to simple calculations of the potential in the
electrolyte during the time-dependent simulations. One can see,
that Eqs. (7.1) and (7.2) are dependent on the concentration but
Eqs. (5.1)–(5.3) are not dependent on the electric potential in the
electrolyte. Thus, it is possible to calculate the evolution of the con-
centration profile independently from the potential and current
distribution in the electrolyte. Therefore the electric potential in
the electrolyte can be calculated separately by solving Eqs. (7.1) and
(7.2) or by using segregated solvers. This approach leads to a higher
accuracy of the calculations, reducing memory limitations and sav-
ing computational time. However, in the steady-state it is possible
to simplify the electric field calculations even more.Consider the
steady-state in electrolyte without bulk source i.e.

R = 0, i(r, t) = i(r), and c(r) = const, (8)
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