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a b s t r a c t

The first elliptic function equation is used in this article to find a new kind of solutions of

nonlinear partial differential equations (PDEs) based on the homogeneous balance method,

the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions

to the Jacobi elliptic functions of a nonlinear PDE describing the nonlinear low-pass electri-

cal lines are obtained with the aid of computer algebraic system Maple. Based on Kirchhoff’s

law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary

differential equation (ODE) using a simple transformation. The given method in this article is

straightforward and concise, and it can also be applied to other nonlinear PDEs in mathemat-

ical physics. Further results may be obtained.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years, investigations of exact solutions

to nonlinear PDEs play an important role in the study of

nonlinear physical phenomena in such as fluid mechanics,

hydrodynamics, optics, plasma physics, solid state physics,

biology and so on. Several methods for finding the exact

solutions to nonlinear equations in mathematical physics

have been presented, such as the inverse scattering method

[1], the Hirota bilinear transform method [2], the truncated

Painlevé expansion method [3–6], the Bäcklund transform

method [7,8], the exp-function method [9–11], the tanh-

function method [12,13], the Jacobi elliptic function expan-

sion method [14–16], the ( G′
G )-expansion method [17–22],

the modified ( G′
G )-expansion method [23], the ( G′

G , 1
G )-

expansion method [24–27], the modified simple equation

method [28–30], the multiple exp-function algorithm

method [31,32], the transformed rational function method

[33], the local fractional series expansion method [34],
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the first integral method [35,36], the generalized Riccati

equation mapping method [37,38] and so on.

The objective of this article is to use a new Jacobi elliptic

function expansion method to construct the exact solutions

of the following nonlinear PDE governing wave propagation

in nonlinear low-pass electrical transmission lines [39]:

∂2V(x, t)

∂t2
− α

∂2V 2(x, t)

∂t2
+ β

∂2V 3(x, t)

∂t2

− δ2 ∂2V(x, t)

∂x2
− δ4

12

∂4V(x, t)

∂x4
= 0, (1.1)

where α, β and δ are constants, while V(x, t) is the voltage

in the transmission lines. The variable x is interpreted as the

propagation distance and t is the slow time. The physical

details of the derivation of Eq. (1.1) using the Kirchhoff’s laws

are given in [39], which are omitted here for simplicity. Note

that Eq. (1.1) has been discussed in [39] using an auxiliary

equation method [40] and its exact solutions have been

found.

This paper is organized as follows: In Section 2, the de-

scription of a new Jacobi elliptic function expansion method

is given. In Section 3, we use the given method described in

Section 2, to find exact solutions of Eq. (1.1). In Section 4, we

solve Eq. (1.1) using a direct method. In Section 5, physical
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explanations of some results are presented. In Section 6,

some conclusions are obtained.

2. Description of a new Jacobi elliptic function expansion

method

Consider a nonlinear PDE in the form

P(V,Vx,Vt ,Vxx,Vtt , . . . ) = 0, (2.1)

where V = V(x, t) is a unknown function, P is a polynomial

in V(x, t) and its partial derivatives in which the highest or-

der derivatives and nonlinear terms are involved. Let us now

give the main steps of the Jacobi elliptic function expansion

method [41]:

Step 1. We look for the voltage V(x, t) in the traveling form

V(x, t) = V(ξ), ξ =
√

k(x − λt), (2.2)

where k and λ are undetermined positive parameters,

and λ is the velocity of propagation, to reduce Eq. (2.1)

to the following nonlinear ordinary differential equation

(ODE):

H(V,V ′,V ′′, . . . ) = 0, (2.3)

where H is a polynomial of V(ξ ) and its total derivatives

V ′(ξ),V ′′(ξ), . . . and ′ = d

dξ
.

Step 2. We suppose that the solution of Eq. (2.3) has the

form:

V(ξ) = g0 +
N∑

i=1

[
z(ξ)

1 + z2(ξ)

]i−1{
gi

(
z(ξ)

1 + z2(ξ)

)

+ fi

(
1 − z2(ξ)

1 + z2(ξ)

)}
, (2.4)

where z(ξ ) satisfies the Jacobi elliptic equation:(
z′(ξ)

)2 = a + bz2(ξ) + cz4(ξ), (2.5)

where a, b, c, g0, gi, fi (i = 1, 2, . . . , N) are constants to be de-

termined later, such that gN �= 0 or fN �= 0.

Step 3. We determine the positive integer N in (2.4) by

balancing the highest-order derivatives and the nonlinear

terms in Eq. (2.3).

Step 4. Substituting (2.4) along with Eq. (2.5) into Eq. (2.3)

and collecting all the coefficients of zi(ξ ) (i = 0, 1, 2, . . . ),
then setting these coefficients to zero, yield a set of algebraic

equations, which can be solved by using the Maple or Math-

ematica to find the values of g0, gi, fi, λ, k, a, b, c.

Step 5. It is well-known [41] that Eq. (2.5) has families of

Jacobi elliptic function solutions as follows:

No. a b c z(ξ)

1 1 −(1 + m2) m2 snξ

2 1 − m2 2m2 − 1 −m2 cnξ

3 m2 −(1 + m2) 1 nsξ = (snξ)−1

4 −m2 2m2 − 1 1 − m2 ncξ = (cnξ)−1

5
1

4

1 − 2m2

2

1

4
nsξ ± csξ

6
1 − m2

4

1 + m2

2

1 − m2

4
ncξ ± scξ or cnξ

1±snξ

Note that there are other Jacobi elliptic function solutions

of Eq. (2.5) which are omitted here for simplicity.

In this table, snξ = sn(ξ , m), cnξ = cn(ξ , m), dnξ =
dn(ξ , m), nsξ = ns(ξ , m), csξ = cs(ξ , m), dsξ = ds(ξ , m),
scξ = sc(ξ , m), sdξ = sd(ξ , m) are the Jacobi elliptic func-

tion with modulus m, where 0 < m < 1. These functions de-

generate into hyperbolic functions when m → 1 as follows:

snξ → tanh ξ , cnξ → sechξ , dnξ → sechξ , nsξ = coth ξ ,

csξ = cschξ , dsξ = cschξ , scξ = sinh ξ , sdξ = sinh ξ , ncξ =
cosh ξ . and into trigonometric functions when m → 0 as fol-

lows: snξ → sin ξ , cnξ → cos ξ , dnξ → 1, nsξ → csc ξ , csξ →
cot ξ ,dsξ → csc ξ , scξ → tan ξ , sdξ → sin ξ , ncξ → sec ξ .

Also, these functions satisfy the following formulas:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1, and sn′ξ =
cnξdnξ , cn′ξ = −snξdnξ , dn′ξ = −m2snξcnξ , cd′ξ =
−(1 − m2)sdξndξ , ns′ξ = −csξdsξ , dc′ξ = (1 − m2)ncξ scξ ,

nc′ξ = scξdcξ , nd′ξ = m2cdξ sdξ , sc′ξ = dcξncξ , cs′ξ =
−nsξdsξ , ds′ξ = −csξnsξ , sd′ξ = ndξcdξ , where ′ = d

dξ
.

Step 6. Substituting the values of g0, gi, fi, k, λ, a, b, c as

well as the solutions of Eq. (2.5) obtained in Step 5, into (2.4)

we have the exact solutions of Eq. (2.1).

3. Exact solutions of Eq. (1.1) using the proposed method

of Section 2

In this section, we apply the Jacobi elliptic function ex-

pansion method of Section 2 to find families of new Jacobi

elliptic function solutions of Eq. (1.1). To this end, we use the

transformation (2.2) to reduce Eq. (1.1) to the following non-

linear ODE:

d2

dξ 2

{
k2δ4

12

d2V

dξ 2
+ (kδ2 − kλ2)V + αkλ2V 2 − βkλ2V 3

}
= 0.

(3.1)

Integrating Eq. (3.1) twice and vanishing the constants of

integration, we find the following ODE:

K2

12

d2V

dξ 2
+ (K − U)V + αUV 2 − βUV 3 = 0. (3.2)

where K = kδ2 and U = kλ2.

Balancing d2V
dξ2 with V3 gives N = 1. Therefore, (2.4) re-

duces to

V(ξ) = g0 + g1

(
z(ξ)

1 + z2(ξ)

)
+ f1

(
1 − z2(ξ)

1 + z2(ξ)

)
, (3.3)

where g0, g1 and f1 are constants to be determined such that

g1 �= 0 or f1 �= 0.

Substituting (3.3) along with Eq. (2.5) into Eq. (3.2)

and collecting all the coefficients of zi(ξ ), (i = 0, 1, . . . , 6)
and setting them to zero, we have the following algebraic

equations:

z6 : 4cK2 f1 − 12K f1 + 12Kg0 + 12Uβ f 3
1 − 36Uβ f 2

1 g0

+ 12Uα f 2
1 + 36Uβ f1g2

0 − 24Uα f1g0 + 12U f1

− 12Uβg3
0 + 12Uαg2

0 − 12Ug0 = 0,

z5 : 12Kg1 − 12Ug1 + K2bg1 − 6K2cg1 − 36Uβ f 2
1 g1

− 36Uβg2
0g1−24Uα f1g1+24Uαg0g1+72Uβ f1g0g1=0,

z4 : 36Kg0 − 12K f1 + 12U f1 − 36Ug0 + 8K2b f1 − 12K2c f1
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