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a b s t r a c t

This paper investigates stochastic stability for stochastic switched AIDS (Acquired Immune

Deficiency Syndrome) models with constant and impulsive control schemes. The stochastic-

ity is introduced via the technique of parameter perturbation and the switching is assumed

that the models parameters are time-varying functions and switch their forms in time. First,

a stochastic switched AIDS model with constant control schemes is studied, and new suffi-

cient conditions are established by using the Lyapunov–Razumikhin method. The results show

that the system is stable under the condition R̄ < 1, regardless of whether the subsystems are

unstable or stable, which implies that the disease could be eradicated theoretically. Further-

more, impulsive control schemes are applied into a stochastic switched AIDS model. Threshold

conditions on the basic reproduction number are developed which guarantee the system is

stochastically stable. In addition, complex dynamic behavior for the positive periodic solution

is analyzed, and the results imply that less vaccination could lead theoretically the disease to

die out. Numerical examples are employed to verify the main results.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The AIDS epidemic is still a global challenge since the first

patients were recognized in 1981. Viral transmission occurs

through direct contact of a mucous membrane or the blood-

stream with a bodily fluid containing HIV (Human Immunod-

eficiency Virus), such as blood, preseminal fluid, and breast

milk [1]. It is reported that 35 million individuals (includ-

ing 3.2 million children) lived with the disease worldwide

until the end of the year 2013, and 2.1 million people be-

came newly infected and 1.5 million died of AIDS-related ill-

nesses in the same year [2]. Thus, it has become a major issue

that how to effectively prevent or control epidemics as they

spread through population.

Mathematical models of AIDS epidemic have played an

important role in understanding the disease dynamics and
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controlling its spread. Mukandavire et al. [3] presented an

HIV/AIDS model with explicit incubation period, and inves-

tigated the local stability of the disease-free and endemic

equilibria. Okosun et al. [4] studied the impact of optimal

control on the treatment of HIV/AIDS, and derived the condi-

tions for optimal control of the disease with condoms, treat-

ment regime and screening of infections. Effective strategies

have been proposed to control or eradiate infectious disease

such as hepatitis B and measles [5]. The standard con-

ventional approach is a continuous constant vaccination,

which has been considered in many literatures [6,7]. It is

predicted that conventional vaccination strategies can clear

the disease if the proportion of the successfully vaccinated

individual is higher than a certain critical value (around

95% for measles) [8]. Recently, another method, impulsive

control strategies has gained prominence due to its highly

successful applications in the control of viral infections such

as hepatitis B, Measles and Smallpox [9]. At each vaccination

time, a fraction of the population is vaccinated, who will
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obtain a permanent or temporary immunity. This kind of

vaccination is called impulsive, since all the vaccine doses

are applied in a time which is very short with respect to the

dynamics of disease. Pulse vaccination strategy was firstly

studied by Agur et al. [10]. From then on, there have been

numerous studies on pulse vaccination in epidemic models.

Experimental evidence shows that the infectious diseases

are inevitably influenced by environmental factors such as

temperature, and the immunological state of the host. In

some sense, stochastic dynamical models give better com-

patibility with reality as they provide some additional de-

gree of realism compared to their deterministic counterpart

[11–14]. Incorporation of stochasticity in epidemic models

has received increasing attention in recent years. Hao et al.

[15] studied a stochastic tumor growth model with immu-

nization.

On the other hand, models coefficients in the epidemic

literature (for example, see [16]) are assumed to be un-

changed during the epidemic spreading. In fact, many infec-

tious diseases fluctuate over time. For example, the weather

changes may lead to the variation of the disease spread-

ing. The human behavior changes affect the epidemic dy-

namics [17]. Some authors [18,19] also modeled the term-

time forcing epidemic models, where the models’ parameters

change abruptly in time (for instance, due to holiday breaks

for school children). It is more realistic to introduce switch-

ing into epidemic models in some cases [[20,21,22].

The approach in this paper is to formulate stochastic

switched AIDS models as stochastic switched systems. More

specifically, the random factors in the form of Gaussian white

noise are introduced into a deterministic AIDS epidemic

model; the model parameters are considered to be switching

parameters and switch their functional forms in time due to

the underlying mechanics governing the spread of a disease

which change in time. The basic AIDS model can be extended

as a stochastic switched HIV model. Switched systems are

special class of hybrid control systems, which are governed

by a combination of continuous and discontinuous subsys-

tems and a switching rule. One main feature of the switched

system is that the included switching rule may induce stabil-

ity of the switched system composed of unstable subsystems

[23,24]. The objective of this paper is to use this approach

to investigate the application of vaccination control schemes

(in the event a potential effective vaccine is developed) to the

stochastic switched AIDS models. Both constant and impul-

sive control schemes are examined to analyze their success

in eradicating the disease by using some of the switched sys-

tems techniques [25]. To the best of the authors’ knowledge,

no research has been done about the stochastic AIDS mod-

els with switching parameters and control schemes. There-

fore, the research on the stochastic switched AIDS dynamical

models with constant and impulsive control strategies is very

important.

The paper is organized as follows: In Section 2, a con-

stant control scheme is applied to stochastic AIDS mod-

els with switching parameters. Threshold criteria are estab-

lished to examine the disease extinction or persistence from

the stochastic switched dynamical point of view. In Section 3,

impulsive control schemes are introduced into stochastic

AIDS models with switching parameters. Sufficient condi-

tions for the control scheme model are established on the

basic reproduction number. Numerical simulations are given

to illustrate our results in Section 4. Some conclusions and

perspectives are given in Section 5.

2. Constant control schemes

Consider the population size is divided into five classes,

namely susceptible population S(t), asymptomatic infective

population I1(t) (showing no symptoms of the disease),

symptomatic infective population I2(t) (showing symptoms

of the disease), the full blown AIDS population A(t), and the

vaccinated population U(t). The susceptible population may

be infected via shared injections or sexual contacts with two

types of infective population. The full blown AIDS population

and the vaccinated population are assumed not to be trans-

mitting the disease.

The model parameters (such as death rate and the con-

tact rate) are always affected by the random fluctuating en-

vironment. Stochasticity is introduced into an AIDS model

via the technique of parameter perturbation which is stan-

dard in stochastic population modeling. Moreover, due to

the seasonal variety, biological and environmental parame-

ters are naturally subjected to fluctuation in time. To inves-

tigate this kind of problems, assume that the coefficients of

the model are time-varying and switching in time. Assume

that these parameters are modeled as switching parame-

ters and are governed by a switching rule σ(t) : (tk−1, tk] →
{1, 2, . . . , m}, k = 1, 2, . . . , which is a piecewise continuous

(from the left) function of time, where m is the number of

the subsystem. The switching time {tk} satisfies tk > tk−1 and

tk → ∞ as k → ∞. Denote the set of all switching rules by I .

A simple periodic switching rule (1) is given, and Fig. 1 is its

illustration.

σ(t) =
{

1, if t ∈ (k, k + 0.5],
2, if t ∈ (k + 0.5, k + 1],

k = 0, 1, 2, . . . (1)

Assume that a fraction τ of asymptomatic infective popu-

lation is treated continuously in time and moved to the vac-

cinated class. This leads to a new stochastic switched AIDS

epidemic model with constant control scheme,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS = (λ − pσ SI1
N

− qσ SI2
N

− uS)dt − ϕ1SdW(t),

dI1 = ( pσ SI1
N

+ qσ SI2
N

− (rσ + aσ + u)I1 − τ I1)dt

−ϕ2I1dW(t),

dI2 = (eσ rσ I1 − (bσ + u)I2)dt − ϕ3I2dW(t),

dA = ((1 − eσ )rσ I1 + bσ I2 − (cσ + u)A)dt − ϕ4AdW(t),
dU = ( − uU + τ I1)dt,

(2)

where λ is the recruitment rate of susceptible population;

u is the natural death rate of all human classes; the switch-

ing function pσ is the contact rate between susceptible and

asymptomatic infective population; qσ is the contact rate

between susceptible and symptomatic infective population;

eσ rσ is the rate at which asymptomatic infective popula-

tion are detected by a screening method to become symp-

tomatic infective population; (1 − eσ )rσ is the rate at which

asymptomatic infective population become the full blown

AIDS population. aσ , bσ , and cσ are disease-caused death
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