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a b s t r a c t

Dynamics of acoustically driven bubbles’ radial oscillations in viscoelastic fluids are known

as complex and uncontrollable phenomenon indicative of highly active nonlinear as well as

chaotic behavior. In the present paper, the effect of magnetic fields on the non-linear behavior

of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid

domain has been investigated. The constitutive equation [Upper-Convective Maxwell (UCM)]

was used for modeling the rheological behaviors of the fluid. Due to the importance of the

bubble in the medical applications such as drug, protein or gene delivery, blood is assumed

to be the reference fluid. It was found that the magnetic field parameter (B) can be used for

controlling the nonlinear radial oscillations of a spherical, acoustically forced gas bubble in

nonlinear viscoelastic media. The relevance and importance of this control method to biomed-

ical ultrasound applications were highlighted. We have studied the dynamic behavior of the

radial response of the bubble before and after applying the magnetic field using Lyapunov ex-

ponent spectra, bifurcation diagrams and time series. A period-doubling bifurcation structure

was predicted to occur for certain values of the parameters effects. Results indicated its strong

impact on reducing the chaotic radial oscillations to regular ones.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of bubble formation and collapse have been

studied using a number of publications, including the stud-

ies of radial oscillating bubbles by Rayleigh [1], Plesset [2,3],

Crum et al. [4], Flynn [5], Lauterborn [6], Plesset et al. [7],

Prosperetti [8–10] and so on. Therefore, it is important to

develop a technique in order to study the bubble radial sta-

bility in distinctive situations. In view of the escalating use

of the bubbles in new applications, particularly medical and
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industrial, the number of studies on the growth and collapse

of the bubbles in different structures and environments has

increased [11]. In more important medical applications, bub-

bles are used for the delivery of drugs [12–14], cancer treat-

ment [15–17], and the barrier opening of clogged veins and

arteries [18,19]. In all cases, bubbles should move and grow

in the blood stream and collapse in the intended location. So

it is important to take the bubbles radius motion stable and

not permit to collapse until the required region. The research

conducted on blood indicates that approximation blood rhe-

ology by non-Newtonian models, correlates well with the ex-

perimental results [20,21].

Therefore, the study of bubble growth and its stabil-

ity in non-Newtonian fluid will be of the most important

concern [22]. The chaotic behavior of bubbles moving in a
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non-Newtonian fluid has been investigated experimentally

by Jiang et al. [23]. In addition to experimental studies

[24–27], there have also been many theoretical investiga-

tions on bubble growth [28–32]. In the article presented by

Wang et al. [33], the nonlinear vibration of a protein bub-

ble submerged in bingham liquid has been mathematically

modeled, and the bubble’s reaction to pressure pulses has

been studied. By presenting an analytical model for bubble

growth in linear viscoelastic fluids and solving it through the

perturbation method, Allen et al. [34] showed that the in-

crease in the Deborah number leads to an increase in bub-

ble radial oscillation amplitude. Deborah number is a non-

dimensional elastic parameter which is defined as the ratio of

the relaxation time and characteristic timescale for the bub-

ble radius oscillation [34]. In another article, Allen et al. [35]

extended his analytical model to nonlinear, non-Newtonian

fluid (UCM fluid) and used numerical methods to solve the

integro-differential equations. They have also demonstrated

the increase in bubble radial oscillation amplitude with the

increase in the Deborah number. In the work of Jimenez-

Fernandez [36], through the development of analytical re-

lations for bubble growth in non-Newtonian fluid fields af-

fected by the external pulses, the growth of bubbles under

the influence of factors like pulse intensity, the Reynolds

number and the amount of elasticity has been investigated.

In this study, it has been emphasized that with the increase

in the Deborah number, bubble growth will become chaotic,

and the bubble will approach the state of collapse.

Furthermore, in different theoretical studies, the subject

of bubble growth in non-Newtonian fluid showed that in

cases where the Reynolds number is of the order 1, the

growth and collapse of bubbles can be controlled via Newto-

nian viscosity. Lind and Phillips [37] have demonstrated the

growth of bubbles in non-Newtonian fluids through differ-

ent constitutive equations. According to their results, at large

Deborah numbers, a bubble displays a completely elastic be-

havior, and its energy diagram indicates a rebound in bubble

growth. Brujan et al. [38] used the perturbation method to

study the growth of bubbles in non-Newtonian compressible

fluids. They showed that at larger Reynolds numbers, sound

emission plays the major role in the damping of bubble ra-

dial oscillations. Also because of the importance of bubble

dynamics, several studies have been conducted on the sub-

ject of bubble stability. That is, when the bubble motion gets

chaotic, its behavior becomes unpredictable and difficult to

deal with [39,40]. In this case, the chaotic nature of the equa-

tion requires particular tools for resolution because of the

inadequacy of the analytical and linear solutions. By using

the primary theory of dynamic systems, Bloom [32] has pre-

sented the stable and unstable behaviors of bubbles in non-

Newtonian fluids. Aliabadi et al. [41] examined the growth

of bubbles in a non-Newtonian fluid field. They have demon-

strated that the bubble radial oscillation amplitude decreases

under the influence of a magnetic field. Building upon Bloom

and Aliabadi’s work, the enhanced understanding of the be-

havior of bubbles in non-Newtonian fluids as well as the abil-

ity to reduce the chaotic radial oscillations could be the first

step in controlling the bubble dynamics.

The main argument of this study focuses on various as-

pects of the dynamics of bubbles in non-Newtonian fluids

with the presence of magnetic fields. In addition, the effects

of substantial parameters that influence the bubble dynam-

ics are studied in a large domain using chaos theory and

considering the measure of the non-Newtonian state of the

fluid (Deborah number). Bifurcation and Lyapunov exponent

diagrams [42–44] are presented for special cases to deter-

mine the chaotic regions. Comprehensive information is pre-

sented about extremely nonlinear pulsations of bubbles in

non-Newtonian fluids at high amplitudes of acoustic pres-

sure where deterministic chaos manifests itself in order to

determine the stable and chaotic regions of the system, par-

ticularly for drug and gene delivery applications where the

applied acoustic pressure is considerably greater than the

pressure employed in the ultrasound imaging.

It has been shown that by imposing a radial magnetic

field, the rate of growth and collapse of the bubbles damp-

ens considerably. Increasing the magnitude of the magnetic

field will cause an increase in the damping effect and, as a

result, the growth and collapse of the bubbles can be con-

trolled. The effects of magnetic fields, acoustic field proper-

ties and the Deborah number on stability of non-Newtonian

fluids are discussed in the following sections.

2. Dynamics of spherical bubble in viscoelastic fluids

The governing equation of bubble growth in non-

Newtonian fluid follows the general Rayleigh–Plesset (GRP)

equation, and with regards to the viscoelastic effects of the

fluid, the following integro-differential equation is obtained

[35]:

RR̈ + 3

2
Ṙ2 = 1

ρ

[
pg − p∞ − 2σ

R
+ 2

∫ ∞

R

(
τrr − τθθ

r

)
dr

]
(1)

In the above equations, τ rr and τ θθ are components of the

shear stress tensor, which have a non-uniform field distribu-

tion because of the deformation that exists in the fluid field.

Eq. (1) has been written for a bubble with radius R which is

affected by a pressure field far away from the bubble, p∞, in

the form of p0 + Pa sin (ωt), where p0 is the ambient pres-

sure. The pressure pulse enters the fluid field with angular

frequency ω and pressure amplitude Pa. Also pg and σ de-

note the uniform pressure inside the bubble and surface ten-

sion of the fluid, respectively. For simplicity, we assume that

the internal gas follows a polytropic relationship with expo-

nent k, and we have pg = pg0
( R0

R )3k, where pg0
and R0 are

the gas bubble pressure and the bubble radius at the initial

equilibrium state respectively. By considering the UCM time

derivative method [34,35], the radial and theta stress tensor

terms will be obtained through the following simplified dif-

ferential equations:⎧⎨
⎩

τrr + λ1

(
∂τrr

∂t
+ R2Ṙ

r2
∂τrr

∂r
+ 4R2Ṙ

r3 τrr

)
= 4η0

R2Ṙ
r3 ,

τθθ + λ1

(
∂τθθ

∂t
+ R2Ṙ

r2

∂τθθ

∂r
− 2R2Ṙ

r3 τθθ

)
= −2η0

R2Ṙ
r3 .

(2)

where η0 is the zero shear-rate viscosity, λ1 is the relaxation

time, and r is the distance of each element from the coordi-

nate system’s origin. By applying the perturbation method,

Allen et al. [34,35] solved the above coupled equations and

then, in 2001, they introduced the transformation y = r3 −
R3(t) to immobilize the coordinate by using the Lagrangian
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