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a b s t r a c t

Regularity has always been attributed to periodicity. However, there has been a spurt of inter-

est in another unique type of regularity called anitperiodicity. In this paper we have presented

results of antiperiodic oscillations obtained from a forced duffing equation with negative lin-

ear stiffness wherein the increase in the number of peaks in antiperiodic oscillation with the

forcing strength has been observed. Similarity function has been used to identify the antiperi-

odic oscillation and further the bifurcation diagram has been plotted and stability analysis of

the fixed points have been carried out to understand its dynamics. An analog electronic cir-

cuit governed by the forced Duffing equation has been designed and developed to investigate

the dynamics of the antiperiodic oscillations. The circuit is quite robust and stable to enable

the comparison of its analog output with the numerically simulated data. Power spectrum

analysis obtained by fast Fourier transform has been corroborated using a nonlinear statisti-

cal technique called rescale range analysis method. By this technique we have estimated the

Hurst exponents and detected the coherent frequencies present in the system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of nonlinear dynamics, there has been

a growing interest in recent years in a particular class of

oscillations called antiperiodic oscillations, which posses

a unique kind of regularity and periodicity [1,2]. Generally

regularity is understood as similar to periodicity, but there

exists a relatively unfamiliar type of regularity known as

antiperiodic oscillation (APO). An APO, is a special type of

periodic oscillation, obeying the relation x(t + T) = −x(t),
where T is a time period of antiperiodicity. It is therefore

clear that, an antiperiodic oscillation with time period T, will

be a periodic oscillation with time period 2T. The trigono-

metric functions sin (t) and cos (t) are trivial examples of

APOs as they follow the identity sin (t + π) = − sin (t) and

cos (t + π) = − cos (t) respectively, where π is an antiperiod
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and 2π is a period. These trigonometric functions are the so-

lutions of a harmonic oscillator whose dynamics is governed

by the linear differential equations: ẋ = y and ẏ = −x. The

linear nature of the harmonic oscillator equation restricts

the solution only to a single period oscillation suggesting

that nonlinearity may be necessary for the higher period

APOs. Theoretical studies on APOs have been carried out

in higher order differential equations [3] as well as partial

differential equations [4]. Anti periodic solutions have also

been explored in heat equation [5], neural networks [6–11],

second order Duffing-like oscillators [12], pendulum like [13]

oscillators and several other systems [14–16].

The first experimental investigation was carried by Freire

et al. [1] in a nonlinear electronic circuit [1] where self ex-

cited antiperiodic oscillations were reported and the other

was in a Duffing like proxy equation [17]. Recently APOs

were reported by Singla et al. [2] in coupled Chua’s circuit.

In our present work, we have reported observations of APOs

in a forced Duffing oscillator which is a low dimensional sys-

tem as compared to earlier reported experimental results on

APOs [1,2,17].
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Fig. 1. Plots of numerically simulated antiperiodic time series for the different values of the control parameter k ranging from 0.02 to 7.6.

Forced Duffing equation[18–24] defined in Eq. (1) exhibit-

ing a wide variety of regular and irregular oscillatory patterns

is symmetric under parity inversion [25] (x → −x, t → t + T
2 ;

where T is the period of the driving force). This implies that

the output dynamics of a Duffing oscillator could also exhibit

antiperiodic property.

In this work, Section 2 contains the numerically simulated

time series obtained from Eq. (1), its bifurcation diagram fol-

lowed by confirmation of APO using the similarity function

[26] which is a good tool to identify an APO. In Section 3, the

stability of the fixed points and the effect of the forcing term

on the dynamics of the equation have been studied. Section 4

contains a discussion on the dynamical mechanism for the

generation of APOs. The analytical treatment of the forced

Duffing oscillator is carried out in Section 5. Section 6 con-

tains the circuit description of the Duffing oscillator and the

experimental results are shown in Section 7. Conclusion and

summary of the results are presented in Section 8.

2. The equation of motion and simulated antiperiodic

oscillations

A forced Duffing equation with negative linear stiffness,

positive damping and periodic excitation, given by

ẍ + δẋ − αx + βx3 = k cos (ωt), (1)

where δ (positive) is the damping, k (positive) and ω (posi-

tive) are the forcing amplitude and the forcing frequency re-

spectively. Eq. (1) can yield various types of dynamics like pe-

riodic, chaotic, spiking and so on depending upon the values

of the parameters [20,27].

Eq. (1) can be rewritten as two first order ODEs as

ẋ = y, (2)

ẏ = −δy + αx − βx3 + k cos (ωt). (3)

The above Eqs. (2) and (3) were solved numerically using

the fourth order Runge Kutta method with initial conditions

xi = 0 and yi = 0 at ti = 0. The parameters α, β , δ and ω are

fixed at 0.01, 0.01, 0.05 and 0.05 respectively, while parame-

ter k is considered as the control parameter.

Fig. 1 shows the numerically simulated time series plots

of APOs obtained from Eqs. (2) and (3) for different values of

the control parameter k ranging from 0.02 to 7.6. At k = 0.02,

we observed a clear 3 peak APO and with the increasing k

increase in the number of peaks with the following sequence

of 3, 5, 7, . . . are observed. APOs were not observed for k <

0.016 as seen from the Fig. 2. For k < 0.004, the oscillations

centered around one of the fixed points (in this case ∼1) of

the unforced Duffing equation [Fig. 2a]. For 0.004 < k < 0.016,

various types of oscillations like periodic [Fig. 2b and 2d] and

unstable APO [Fig. 2e] are observed.

The presence of APOs can be identified using the simi-

larity function [2]. The Similarity function [26] S(τ ) between

two time series x1 and x2 is defined as

S(τ ) =
(

< [x1(t) − x2(t + τ)]2 >

[< x2
1
(t) >< x2

2
(t + τ) >]1/2

)1/2

, (4)

where τ is the time lag. For τ = 0, S will be some finite posi-

tive value (but less than 2) if x1 and x2 are different and zero

if the two time series are the same. For an APO, the value of

S(τ ) will oscillate between 0 and 2 because x2 is replaced by

−x1 in the Eq. (4). Fig. 3 shows the plot of the similarity func-

tion between the time series of the variable x and −x for the 3

peak APO (Fig. 1a). In the Fig. 3 it is seen that S(τ ) equals to 2,

0 and 2 for τ equals to 0, 63 and 126 respectively confirming

the antiperiodic nature of the oscillation.

The number of peaks as a function of the forcing strength

is shown in Fig. 4a. It shows xmaxima in the range of the control

parameter (forcing strength) k ∈ (0, 5). Red color dots rep-

resent the points where the transition from lower to higher

peak APO were found. Figure clearly shows that the number

of peaks in APO are increasing with the increase in the forc-

ing strength. An expanded view of the box corresponding to

Fig. 4a is shown in Fig. 4b. It shows xmaxima in the range of

control parameter k ∈ (0, 1).

The bifurcation diagram, shown in Fig. 5 for the range

of the control parameter k ∈ (0, 0.02), is divided into three

different regions: region A (k < 0.004), region B (0.004 <

k < 0.016) and region C (0.016 < k < 0.02) respectively. In

the region A, the trajectory oscillates around one of the sta-

ble attractors of Eq. (2)-(3), whereas in the regions B and C,

the oscillations are bounded between the two attractors of

Eq. (2)-(3). The trajectories are periodic in the region A and
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