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a b s t r a c t

This paper presents a comparative study on the investigation of coherent modes in chaotic

time series data based on two techniques: the empirical mode decomposition and the dis-

crete wavelet transform. We have applied these techniques to the different types of chaotic

time series data obtained from a glow discharge plasma. The discrete wavelet transform and

empirical mode decomposition analysis of the chaotic time series, combined with some sim-

ple statistical estimations like variance and correlation coefficient, helps in identifying the

presence of coherent modes. We carried out a bicoherency analysis on the coherent modes

extracted using empirical mode decomposition to detect the interactions amongst them. It is

quite likely that the interactions between the different plasma modes are responsible for such

turbulent nonlinear oscillations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It was generally believed that turbulence is a random phe-

nomena, but it has been observed that turbulent flow con-

tains motion with a broadband of scales [1]. There are two

different types of scales present in such a flow, one at which

most energy resides and another at which energy dissipates.

The energy containing scales which exhibit most evident

structure are usually referred to as coherent structures [1].

There are several definitions of coherent structures in liter-

ature [1–4] but the most relevant one was given by Robin-

son [4] “Coherent structure is defined as a region of flow over

which at least one fundamental flow variable exhibits signif-

icant correlation with itself or with another variable over a

range of space and/or time that is significantly larger than

the smallest local scale of flow”. With the advent of chaos
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theory, it is now recognized that both chaos and turbulence

are closely related [5]. So, we can say a coherent structure

(CS) is a mode which coexists in a turbulent or chaotic flow,

retaining its form over many characteristic lengths or times

and also show a significant correlation with the original flow,

and hence can have significant effects on the transport and

mixing [6]. Coherent structures are partially deterministic

features of a turbulent flow field which have been exper-

imentally observed using schlieren and shadowgraph pic-

tures [7]. Incidentally, these structures which can also exist

in a chain of mutually coupled oscillators [8] need not always

be periodic or linear, and hence, for their detection, one has

to resort to nonlinear techniques.

Turbulent or chaotic time series signals are highly fluc-

tuating, non stationary and intermittent. They also have a

broadband feature and may consist of a superposition of lo-

calized structures in time. Though there is no clear definition

of coherent structure present in a turbulent or chaotic time

series data, Farge et al. [9] suggested that coherent structures

are “not noise”. Since any experimental time series can con-

sist of noise and coherent feature, the remaining part of time
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series after denoising the time series can be considered as a

coherent structure.

Currently, wavelet transform [9–11] and empirical mode

decomposition [12–17] (EMD), time-frequency analysis tools,

are commonly used for the processing of non-stationary

and nonlinear signals. The wavelet transform decomposes a

signal into different frequency bands and at different time

points with the help of basis functions. The basis functions

have the property of localization in time and frequency. The

only difficulty in using the wavelet transforms, is that the

choice of the basis functions influences the results [11]. EMD

was introduced by Huang et al. [12] for the analysis of non

stationary and nonlinear signals and does not require any

predefined basis functions as in Fourier or wavelet analy-

sis. Flandrin and Goncalves [13] suggested EMD as a data-

driven wavelet like expansion, which also helps to extract

the natural oscillation frequency present in the time series.

The wavelet transform has been used extensively for denois-

ing and detection of the coherent structures of a time series

data [9–11,18]. In the references [10,11], a coherent structure

has been identified as the mode with the highest energy con-

centration but it is possible to have more than one coherent

structure. Since EMD has proved to be a data driven wavelet

like expansion, it can be used as a tool for the detection of

the coherent structures and in this paper we have consid-

ered the highest energy mode as well as those with compa-

rable energy to the coherent modes. This allows us to not only

identify but also study the interaction between the coherent

modes leading to the chaotic behavior.

The detection of coherent structures in a plasma turbu-

lence or chaos is important in view of their role in the trans-

port of momentum and energy [19]. The aim of this paper

is to detect the coherent modes in the chaotic time series

(CTS) data using EMD and discrete wavelet transform (DWT)

analyses [10,11]. The versatility of these techniques has been

demonstrated by applying them to experimental time series

data obtained from a glow discharge plasma. One can detect

the periodic coherent modes using Fourier analysis, but the

advantages of EMD and DWT are that as well as periodicity,

they can also detect short timescale coherent modes. After

identifying the coherent modes by EMD, phase coupling be-

tween the different modes has been estimated using bico-

herency method which can also give us some information

about these modes.

The rest of the paper is organized as follows: Section 2

presents a brief methodology of EMD and DWT. We de-

scribe the experimental setup in Section 3 and subsequently

show the extraction and analysis of the coherent modes from

the experimental chaotic time series data in Section 4. In

Section 5 we have discussed the physical contribution of

the coherent modes by estimating their frequencies and pre-

sented a qualitative comparison between EMD and DWT.

Section 6 presents the bicoherency analysis to investigate

the interaction amongst the coherent modes. Conclusion and

summary of the results are presented in Section 7.

2. Theoretical background

2.1. Empirical mode decomposition

Empirical mode decomposition (EMD) is a method which

resolves a signal into its inherent modes, called intrinsic

mode functions (IMFs) [12]. In our work, we decompose a

signal into its IMFs based on the local time scales i.e. the de-

tection of the local maxima and minima. This method may

be applied to both nonlinear as well as non stationary sig-

nals. There are two conditions for a signal to be an IMF: (1)

envelopes of maxima and minima must have zero mean and

(2) the number of extrema and the number of zero crossings

differ at most by one. The first condition assures that the IMF

is symmetric, and the second condition assures that no rid-

ing waves of multiple frequency exist in an IMF. These two

conditions ensure that the IMF is monocomponent in fre-

quency [12].

A signal x(t) can be decomposed into its IMFs using the

sifting process [12] which involves the following steps:

1. Detect all the local maxima and connect them using cubic

spline to form an envelope of maxima, Emax(t).

2. Detect all the local minima and connect them using cubic

spline to form an envelope of minima, Emin(t).

3. Compute the mean m(t) = Emax(t)+Emin(t)
2 .

4. Compute the residue h11(t) = x(t) − m(t).

5. Iterate step (1–4) on residue until it has satisfied the

stopping criteria (discussed in the next paragraph) and

h1n(t) = C1(t) is designated as the first IMF.

6. Compute the residue R1(t) = x(t) − C1(t).

7. Iterate step (1–6) on R1(t) to compute the second IMF

C2(t) and the residue R2(t).

8. Iterate step (1–7) on the residue and compute the finite

number of modes and a residue Rk(t) = Rk−1(t) − Ck(t)
which is just the trend.

The above algorithm removes the high frequency oscilla-

tion from the data with each repetition resulting in higher

IMFs containing a lower frequency oscillation than the ear-

lier one. The sifting procedure mentioned above is contin-

ued till a particular stopping criteria is met, ideally when the

two conditions for a signal to be an IMF are fulfilled. But im-

posing a too low threshold for terminating the process may

lead to the generation of spurious IMFs. There are many stop-

ping criteria discussed in literature [12,14]. Here, we have

adopted a stopping criteria based on two thresholds δ1 and

δ2, the ratio of mean to the amplitude of the envelopes i.e.

on S(t) =
∣∣∣ M(t)

A(t)

∣∣∣ which is proposed by Rilling et al. [14]. The

two threshold conditions δ1 and δ2 are imposed to guaran-

tee globally small fluctuations in the mean while taking large

excursions. For a given fraction of time (1 − α), S(t) should

be less than δ1 and for the rest of the time S(t) should be less

than δ2. In our later analysis, δ1, δ2 and α are set at values of

0.05, 0.5 and 0.05, respectively.

The correlation coefficient (CC) of an IMF, gives an idea

about its contribution to the original signal, and is calculated

using the following relation [15]

CC =
∫

IMF(t) · X(t)dt√∫
IMF(t) · IMF(t)dt

√∫
X(t) · X(t)dt

, (1)

where X(t) is a signal. The value of CC is normalized to lie be-

tween 0 and 1. Only those modes which have a CC > 0.1(10%)

are taken into consideration for the physically significant

modes (relevant) and the rest of the modes are considered

as redundant.
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