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a  b  s  t  r  a  c  t

The  case  when  the  potential  distribution  inside  a corrosion  cavity  obeys  Ohm’s  law  is  considered.  Math-
ematically,  the  potential  drop  in  the  crevice  is  described  by a  Poisson-type  equation  with  a  non-linear
source  term.  A  simple  method  for finding  all  possible  solutions  in  a one-dimensional  approximation  and
for investigating  their  stability  has  been  developed.  We  derive  a  simple  relation  for  estimating  the  critical
depth  of  the  crevice,  Lc (which  is defined  as  the depth  at  which  the  active–passive  transition  just  occurs
within  the  crevice)  as a function  of the  width  of  the  crevice,  w, electrolyte  conductivity,  �, metal  poten-
tial,  Emet,  and  a polarization  curve.  It  is  shown  that  Lc is  proportional  to

√
(w�) and  is a  linear  function  of

Emet.  Calculation  of  the  corrosion  damage  (maximum  depth  of  the  penetration  into  the  metal,  wmax)  as  a
function  of time  and  position  inside  the  crevice  has  been  performed.  It is  shown  that  during  the initial
stages  of  crevice  corrosion,  when  the  one-dimensional  approximation  is  valid,  wmax is  determined  mainly
by the  polarization  curve  for  the  anodic  dissolution  of  the  metal.  It  is  shown  that,  in the  general  case,  it
is impossible  to  neglect  the  potential  drop  in the  external  environment  when  quantitatively  describing
crevice  corrosion.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the principal tasks in theoretically describing crevice cor-
rosion is to develop the ability to predict which geometries will
be susceptible to this form of attack and to determine the critical
crevice geometry that separates the region where crevice corro-
sion initiates from that where crevice corrosion does not occur [1].
In those cases, when the occurrence of crevice corrosion cannot be
avoided, the prediction of the corresponding corrosion damage as
a function of time is of great practical importance. In this paper,
we estimate quantitatively the value of crevice corrosion damage,
which is expressed as the maximum penetration into the crevice
wall.

It has been suggested that different mechanisms must be
invoked to describe the initiation of crevice corrosion in differ-
ent systems (geometries). In accordance with the classical point
of view, the initiation of crevice corrosion is attributable to the
development of a differential aeration cell with the subsequent
acidification of the crevice solution and/or migration of aggres-
sive anions (for example, Cl−) into the cavity [1–7], as embodied
in the differential aeration hypothesis (DAH). However, as claimed
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in Ref. [7] “this classical theory is not able to explain cases of
immediate corrosion or cases of crevice corrosion in systems which
show no significant acidification or aggressive ion buildup in the
crevice solution”. In these cases, crevice corrosion can be caused
by IR (ohmic) potential drop in the cavity, which places the local
metal potential existing in the crevice wall in the active dissolution
region of the polarization curve, as developed extensively by Pick-
ering and co-workers [1,7–15].  Generally speaking, in the absence
of significant concentration drops in the crevice, the IR drop can
be calculated by solving a Poisson-type differential equation rela-
tive to the potential in the solution by using a numerical method.
In particular, such calculations lead to the definition of the loca-
tion of the active–passive transition and to the definition of the
so-called critical crevice depth. Here, the critical crevice depth, Lc,
is defined as the depth, as measured from the crevice mouth, at
which the active–passive transition just occurs within the crevice
[1,7]. It is assumed that for crevices that are deeper than Lc, the
active–passive transition will manifest itself and lead to crevice cor-
rosion. For crevices that are shallower than Lc, the active–passive
transition and, accordingly, crevice corrosion will not occur [7].  It
has also been stated that computation of the critical crevice depth
could be made solely on the basis of the polarization curve and the
conductivity of the solution [1].

However, in our opinion, the last conclusion is valid only if
the nonlinear, Poisson-type equation has a unique solution for the
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assumed boundary conditions. If the solution is not unique, the
location of the active–passive transition (and even the occurrence
of this transition) will depend also upon the history of crevice ini-
tiation. The fact that the potential and current distributions in a
crevice are not unique, especially for the case of metals that show
active–passive kinetics, has been mentioned in the literature (see,
for example, Refs. [17,18]). In this case, it is also important to
investigate if some of the possible solutions that are obtained are
unstable and, accordingly cannot be observed [17,18]. Below, it is
shown that this situation can occur in practice under certain condi-
tions. We  also show that the crevice can remain passive, even when
its depth is greater than the critical value, Lc. Generally speaking, the
problem of multiplicity and stability of the solutions to the poten-
tial distribution are not limited to electrochemical systems that
are described by Poisson-type equation. Thus, for example, such
problems arise in the case of corrosion of iron rotating disk [19] or
differential aeration corrosion under a moisture film [20,21].

From a mathematical point of view, in the one dimensional
approximation, we have to solve two boundary value problems
(boundary conditions are supposed to be satisfied at the mouth
and at the bottom of the crevice). In Refs. [1,7,16–18],  this problem
has been addressed by using the so-called relaxation method, in
which a trial solution consisting of values of the dependent vari-
ables at each mesh points is developed, with a new trial function
being adopted if the previous one did not satisfy the desired finite-
difference equations [22]. It is well known that problems with the
convergence of the trial solution to the actual solution can arise for
the case of non-linear equations [22]. This problem becomes espe-
cially important for non-linear equations, which generally have
multiple solutions, and it is not evident to which particular solu-
tion the numerical iteration will converge. In our opinion, it would
much simpler to solve the two boundary value problem by using
the so-called shooting method, which reduces the two  boundary
value problem to an initial value problem. Below, it will be shown
how the latter method will allow us to receive all possible solu-
tions, simultaneously, and to investigate their stability. By using
the results of the calculations, we suggest a simplified analytical
method for estimating the critical depth, Lc, as a function of the
width of the crevice, w, electrolyte conductivity, �, metal potential,
Emet, and a polarization curve, along with the estimation of corro-
sion damage during initial stages of crevice corrosion, when the
one-dimensional approximation is valid. Special attention will also
be paid to the influence of the charge transfer on the external sur-
faces (outside the crevice) on the process of crevice corrosion. Such
a “Coupled Environment Crevice Model (CECM)” follows closely our
previous work on developing the Coupled Environment Fracture
Model (CEFM) to describe stress corrosion cracking [23,24].

2. Mathematical model

Let us consider the one-sided crevice shown in Fig. 1. It is
assumed that the crevice has constant thickness, d (perpendicular
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Fig. 1. Schematic of crevice with a gap, w(x), and depth L. It is assumed that the
thickness of the crevice (in the direction perpendicular to the plane of the figure) is
constant.

to the plane of Fig. 1). Application of the law of charge conservation
in Fig. 1 yields:

i(x + dx)w(x + dx)  − i(x)w(x) = is(x)ds(x) (1)

where x is the distance from the crevice mouth into the crevice
measured along the plane insulated surface, w(x) is the width of the
crevice, i(x) is the current density (averaged over the crevice cross-
sectional gap), is(x) is the charge transfer current density entering

the crevice at the metal crevice wall, and ds = dx
√

1 + (dw/dx)2 is
the elementary length of the curve on the metal surface between
cross sections x and x + dx.  Geometrically, ds = dx/cos(ˇ), where  ̌ is
the angle between the tangent to the metal surface and the x axis
and

cos[ˇ(x)] = 1√
1 + (dw/dx)2

(2)

Here, we  consider the possibility that, due to the corrosion dis-
solution, the metal surface may  be non-planar.

The differential form of Eq. (1) can be rewritten as

d[iw]
dx

= is

√
1 +
(

dw

dx

)2

(3)

In the 1-D approximation, the current density, i, can be
expressed via Ohm’s law (assuming that there are no significant
concentration gradients in the crevice) as

i = −�
dϕ

dx
= �

dE

dx
(4)

Here, � is the conductivity of the electrolyte, ϕ is the electrostatic
potential in the solution (averaged over crevice cross-section), and
E is the potential of the metal measured relative to some reference
electrode. If ϕ is chosen to be 0 at the crevice mouth the relation
between ϕ and E is

E = E0 − ϕ (5)

where E0 is the metal potential at the crevice mouth (at x = 0).
Substitution of Ohm’s law into the equation of charge conserva-

tion yields

d

dx

(
w(x)

dE(x)
dx

)
= is(E)

� cos[(ˇ(x)]
(6)

In this expression, we have taken into account that the charge
transfer current density on the metal surface is known as a function
of the metal potential, E, rather than as a function of the distance
from the crevice mouth. Accordingly, it is more convenient to con-
sider E as an unknown value, rather than the potential drop in the
solution, ϕ.

The boundary conditions for Eq. (6) are follows:

E = E0 at x = 0 (7)

and

dE

dx
= 0 at x = L (8)

Boundary condition (8) states that the tip of the crevice is an
insulator or that, due to the condition w � L (the crevice is thin),
it is possible to neglect by the current that flows into the crevice
through the tip in comparison with the current that flows into the
crevice through the side walls. It is important to note that applica-
bility of the 1-D approximation in this case requires, along with
the usual condition w(x) � L, also the fulfilling of the condition
cos(ˇ) � 1. Otherwise, even the term “width of the crevice” looses
geometrical sense.



Download English Version:

https://daneshyari.com/en/article/188868

Download Persian Version:

https://daneshyari.com/article/188868

Daneshyari.com

https://daneshyari.com/en/article/188868
https://daneshyari.com/article/188868
https://daneshyari.com

