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a b s t r a c t 

This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one con- 

sidering fractional Lorenz systems with unknown parameters, and the second one considering known 

upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use 

a reduced number of control signals and control parameters, employing mild assumptions. The stability 

of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the 

synchronization errors is analytically proved in the case when the upper bounds on some system parame- 

ters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness 

of the proposed control strategies. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The goal of the synchronization of two dynamical systems 

evolving separately, one called “master” and the other called 

“slave,” is that those systems will be sharing a common trajectory 

from a certain time onward. The synchronization of chaotic sys- 

tems has been widely studied due to its theoretical challenges and 

its applications in important areas such as secure communications, 

chemical systems, modeling brain activities [1] , ecological systems 

[2] , among others. 

The synchronization can be performed under the hypothesis 

that system parameters are known (nonadaptive synchronization, 

or simply synchronization) or, if those parameters are unknown 

(adaptive synchronization) [3] . When the systems to be put in syn- 

chrony are described by fractional differential equations, the term 

fractional adaptive synchronization is used. 

We can find in literature many works related to adaptive syn- 

chronization, whose results can be applied to the adaptive syn- 

chronization of fractional Lorenz systems. Different techniques 

have been proposed in these works, such as modified projec- 

tive adaptive synchronization [1,4,5] , adaptive full-state linear error 

feedback [6–8] , adaptive sliding mode control [9–12] , fuzzy gener- 

alized projective synchronization [13] , among others [14] . However, 

these techniques use the maximum possible number of control sig- 
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nals, which in the case of the fractional Lorenz system analyzed in 

this work is three. 

We can find some few works that can be applied to fractional 

Lorenz system, where only one control signal is used to make 

adaptive stabilization, using sliding mode control [15–17] . Apply- 

ing these control techniques it is possible to stabilize a Lorenz sys- 

tem at the origin, using only one control signal. However, the as- 

sumption on the system structure for the application of these tech- 

niques does not allow their use in synchronization of two frac- 

tional Lorenz systems. This is because the definition of the syn- 

chronization errors lead to a structure different from the one re- 

quired for the application of these techniques. Moreover, even for 

making stabilization of the Lorenz system using these techniques, 

some of the Lorenz system parameters are needed to construct the 

control signal, so all the system parameters can not be unknown. 

In this paper we study the synchronization of two fractional 

Lorenz systems with unknown parameters, using a direct approach. 

The direct approach consists of directly adjusting the controller pa- 

rameters, without identification of the unknown plant parameters. 

Since all the parameters of the Lorenz system are considered un- 

known and only one or two control signals are used to achieve 

synchronization, this is a work that, as far as the authors know, 

has not been reported in literature. 

Firstly, we analyze the three possible cases where two control 

signals and one adjustable parameter are used. Next we analyze 

two cases where only one control signal and one adjustable pa- 

rameter are employed. In the first four cases studied, no assump- 

tions on the system states boundedness is made. In the fifth case, 
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boundedness on the master state trajectories is assumed. The sta- 

bility of the controlled systems are proved in all cases, using the 

fractional extension of the Lyapunov direct method, and the main 

difficulties in proving the convergence to zero of the synchroniza- 

tion errors are exposed. 

An alternative solution for the five cases, where an upper bound 

on some of the system parameters is assumed to be known is pre- 

sented as well. In these cases, not only the stability of the con- 

trolled system is proved, but the convergence to zero of the syn- 

chronization errors is proved as well, using the fractional extension 

of the Lyapunov direct method. 

The paper is organized as follows. Section 2 presents some basic 

concepts of fractional calculus and stability of fractional order sys- 

tems, which are used along the paper. Section 3 presents the state- 

ment of the adaptive synchronization problem, and the proposed 

solutions in the adaptive case. The alternative solutions assuming 

a known upper bound on some system parameters are presented 

as well. The theoretical stability analysis of the controlled system 

in both cases and the convergence of the synchronization errors 

when the upper bound on some system parameters are assumed 

to be known are also presented in Section 3 . Section 4 presents 

the simulation results for the solutions proposed in Section 3 , and 

a comparison with another control strategy available in literature. 

Finally, Section 5 presents the main conclusions of the work. 

2. Some concepts related to fractional calculus and stability of 

fractional systems 

This section presents some basic concepts of fractional calculus 

and stability of fractional order systems. 

2.1. Fractional calculus 

Fractional calculus studies integrals and derivatives of orders 

that can be any real or complex numbers [18] . The Riemann–

Liouville fractional integral is one of the main concepts of frac- 

tional calculus, and is presented in Definition 1 . 

Definition 1 (Riemann–Liouville fractional integral [18] ) . The 

Riemann–Liouville fractional integral of order α ∈ C ( � ( α) > 0 ) is 

defined as 

I αa + f ( t ) = 

1 

�( α) 

t ∫ 
a 

f ( τ ) 

( t − τ ) 
1 −α

dτ (1) 

where t > a , � ( α) is the real part of α and �( α) corresponds to 

the Gamma Function, given by Eq. (2) : 

�( α) = 

∞ ∫ 
0 

t α−1 e −t dt . (2) 

There are some alternative definitions regarding fractional 

derivatives. Definition 2 corresponds to the fractional derivative ac- 

cording to Caputo, which is the one most frequently used in engi- 

neering problems and the one used in this paper. 

Definition 2 (Caputo fractional derivative [18] ) . The Caputo frac- 

tional derivative of order α ∈ C ( � ( α) > 0 ) is defined as 

C 
t 0 

D 

α
t x ( t ) = 

1 

�( n − α) 

t ∫ 
a 

f ( n ) ( τ ) 

( t − τ ) 
α−n +1 

dτ (3) 

where t > a , n = � ( α) + 1 for α / ∈ N 0 ; n = α for α ∈ N 0 . 

2.2. Stability of fractional order systems 

The known methods for stability analysis of integer order sys- 

tems differ from those that have been proposed for fractional order 

systems. The conditions under which fractional order linear time- 

invariant systems are stable were studied in [19] . However, in the 

case of fractional adaptive systems this analysis is not valid, since 

they are time-varying. The following theorem is used in this paper 

for the stability analysis of the adaptive fractional synchronization 

schemes. 

Theorem 1 (Lyapunov stability and uniform stability of fractional 

order systems [20] ) . Let x = 0 be an equilibrium point for the nonau- 

tonomous fractional-order system (4) . 

C 
t 0 

D 

α
t x ( t ) = f ( x ( t ) , t ) , α ∈ ( 0 , 1 ) (4) 

Let us assume that there exists a continuous function V ( x ( t ), t ) 

such that 

• V ( x ( t ), t ) is positive definite. 

• C 
t 0 

D 

β
t V ( x ( t ) , t ) , with β ∈ ( 0 , 1 ] , is negative semidefinite. 

then the origin of system (4) is Lyapunov stable. 

• Furthermore, if V ( x ( t ), t ) is decrescent, 

then the origin of system (4) is Lyapunov uniformly stable. 

Besides the stability and uniform stability, asymptotic stabil- 

ity can be proved for fractional order systems using the fractional 

extension of Lyapunov direct method as well, as it is stated in 

Theorem 2 . 

Definition 3. A continuous function γ : [0, t ) → [0, ∞ ) is said to 

belong to class- K if it is strictly increasing and γ ( 0 ) = 0 [21] . 

Theorem 2 (Fractional-order extension of Lyapunov direct method 

[21] ) . Let x = 0 be an equilibrium point for the nonautonomous 

fractional-order system (4) . Assume that there exists a Lyapunov func- 

tion V ( t, x ( t )) and class-K functions γi ( i = 1 , 2 , 3 ) satisfying 

γ1 ( ‖ x ‖ ) ≤ V ( t , x ( t ) ) ≤ γ2 ( ‖ x ‖ ) (5) 

C 
t 0 

D 

β
t V ( t , x ( t ) ) ≤ −γ3 ( ‖ x ‖ ) (6) 

where β ∈ (0, 1) . Then the origin of the system (4) is asymptotically 

stable. 

Remark 1. Given the relationship between positive definite func- 

tions and class- K functions, Theorem 2 can be rewritten as in the 

following. 

Let x = 0 be an equilibrium point for the nonautonomous 

fractional-order system (4) . Assume that there exists a Lyapunov 

function V ( t, x ( t )) positive definite and decrescent, satisfying that 
C 
t 0 

D 

β
t V ( t , x ( t ) ) is negative definite, β ∈ (0, 1), then the origin of 

system (4) is asymptotically stable. 

The following lemma will be useful in proving the stability of 

fractional synchronization schemes, together with Theorem 1 . 

Lemma 1 ( [20] ) . Let x ( t ) ∈ R 

n be a vector of differentiable functions. 

Then, for any time instant t ≥ t 0 , the following relationship holds 

1 

2 

C 
t 0 

D 

α
(
x T ( t ) P x ( t ) 

)
≤ x T ( t ) P C 

t 0 
D 

αx ( t ) , ∀ α ∈ ( 0 , 1 ] (7) 

where P ∈ R 

n ×n is a constant, square, symmetric and positive definite 

matrix. 

The case when P = I was treated in [22] , and the specific scalar 

case can also be found in [23] . 
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