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a b s t r a c t 

The algebraic criterion for Abelian integral was posed in (Grau et al. Trans Amer Math Soc 2011) and 

(Mañosas et al. J Differ Equat 2011) to bound the number of limit cycles bifurcating from the center 

of polynomial Hamiltonian system. Thisapproach reduces the estimation to the number of the limit cy- 

cle bifurcating from the center to solve the associated semi-algebraic systems (the system consists of 

polynomial equations, inequations and polynomial inequalities). In this paper, a systematic procedure 

with interval analysis has been explored to solve the SASs. In this application, we proved a hyperellip- 

tic Hamiltonian system of degree five with a pair of conjugate complex critical points that could give 

rise to at most six limit cycles at finite plane under perturbations ε(a + bx + cx 3 + x 4 ) y ∂ 
∂ x 

. Moreover we 

comment the results of some related works that are not reliable by using numerical approximation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction and main results 

Hilbert’s 16th problem [1] asks for the maximum number 

(Hilbert number) and distribution of limit cycles that a polynomial 

planar vector field could have for a given degree n . It is unsolved 

even for the simplest case n = 2 . Arnold [2] proposed a restricted 

version which initializes to study small perturbations to Hamilto- 

nian system or planar integrable system as follows: 

dx 

dt 
= 

∂ H 

∂ y 
+ ε p(x, y, δ) 

dy 

dt 
= −∂ H 

∂ x 
+ ε q (x, y, δ) 

(1.1) 

where 0 ≤ | ε| � 1, Hamiltonian H ( x, y ) and perturbation terms p ( x, 

y, δ), q ( x, y, δ) are real polynomials in x and y , the degree of H is 

m , the degree of perturbation p , q are at most n , parameter δ ∈ R 

N 

compact. 

Suppose the unperturbed system (1.1) ε=0 has a continuous fam- 

ily of ovals γ h defined by equation H(x, y ) = h, h ∈ J , where J is an 

open interval. Therefore, the following Abelian integral (the first- 

order Melnikov function) 

I(h, δ) = 

∮ 
γh 

q dx − p dy, h ∈ J (1.2) 

plays a important role in limit cycle bifurcation by perturbing a 

center. For fixed integers m and n , the total number of the limit 
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cycle bifurcating from the period annulus of (1.1) ε=0 is bounded 

by the maximum Z ( m, n ) of the number of isolated zeroes of the 

Abelian integral (1.2) , taking into account their multiplicities. If 

m = n + 1 , the above problem is usually called the weakened (or 

tangential, infinitesimal) Hilbert’s 16th problem, and the number ˜ Z (n ) = Z(n + 1 , n ) can be chosen as the lower bound of Hilbert 

number H ( n ). 

In the literature, there are many techniques and arguments to 

tackle the problem of bounding the number of zeroes of Abelian 

integrals, lots of them are very long and non-trivial, see the part 

II of [3] . The authors [4,5] proposed a purely algebraic criterion 

which addresses to verifying the problem whether the collection 

of Abelian integrals is an ECT-system [4,6–8] or Chebyshev system 

with accuracy k [5] , which implies that the number of real zeroes 

of any nontrivial linear combination 

α0 I 0 (h ) + α1 I 1 (h ) + · · · + αn −1 I n −1 (h ) 

is at most n + k − 1 counted with multiplicities. The criterion gen- 

eralizes the work of Li and Zhang [9] , which enables to reformulate 

the problem in a purely algebraic way. By applying the criterion, 

one could transfer the estimation of the number of real zeroes of 

Abelian integral to that of the number of real roots of a tuple of as- 

sociated semi-algebraic systems (SAS for short). By semi-algebraic 

system, we mean systems consisting of polynomial equations, in- 

equalities and inequations. The reader is referred to see [10,11] for 

more details. In some sense, this criterion reduces the difficulties 

of qualitative analysis in limit cycle bifurcating from a center to 

the computational complexity in estimating the number of real 

roots of the associated SASs. Hence one keypoint in applying the 
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algebraic criterion to Abelian integral is to solve the associated 

SASs in a practical and efficient algorithm. 

Many problems in the computational or applied sciences and 

engineering can be reduced to the solving of SAS, where the key to 

the question is to solve polynomial equations. There are two basic 

approaches to tackle the problem numerically or algebraically. The 

main methods [12–14] to solve a SAS by symbolic computation are 

Ritt-Wu method, Gröbner basis method and elimination by resul- 

tant, by numerical calculation, there are Newton’s iteration and ho- 

motopy continuation method and so on. The symbolic computation 

is strict but sometimes is of low efficiency, whereas the numerical 

calculation is relatively rapid but the results are sometimes unre- 

liable, a famous cautionary example due to Wilkinson [15] , which 

shows how much the roots of a univariate square-free polynomial 

can be changed under a small disturbance of its coefficients. Thus, 

the interval algorithm is applied in the works [7,8,16] , and the hy- 

brid algorithm [17] take both the advantages of the symbolic and 

numerical methods. 

Assume that the polynomial equation W (x, z) = 0 has real root 

( ̄x , z̄ ) at the rectangle domain 

D := { (x, z) ∈ R 

2 | z l < z < 0 , 0 < x < x r } , 
where the variables x, z are determined by the equation q (x, z) = 0 , 

and z = σ (x ) . Here mapping σ is an involution, recall an involution 

is a diffeomorphism with a unique fixed point satisfying σ � = Id 

and σ 2 = Id. 

Our approaches for solving the above SAS is as follows. 

1. (Variable elimination by resultant). The elimination theory by 

resultant implies that the components x̄ , z̄ satisfy the resultant 

equation 

R (x ) = res (q (x, z) , W (x, z) , z) = 0 , ˜ R (z) = res (q (x, z) , W (x, z) , x ) = 0 , 

respectively. 

2. (Real root isolation). Isolating the real root of the resultant 

R ( x ) (or ˜ R (z) ) denotes the real root isolation intervals (see 

Definition 6.2 ) contained in (0, x r )(or ( x l , 0)) by I i (or J k , respec- 

tively), through which to minimize the possible existing domain 

of the common roots ( ̄x , ̄z ) of q ( x, z ) and W i ( x, z ) in D to the 

matched boxes I i × J k . The theory of real root isolation to uni- 

variate polynomial implies in each of them there exists at most 

one common root. 

3. (The estimation to the number of common solutions). In 

each matched box, one could verify whether the box has a 

common root or not mainly taking advantage of the properties 

deduced from the involution and the intermediate value theo- 

rem of continuous function on compact connected set. 

As an application, we consider the perturbations from hyperel- 

liptic Hamiltonian of degree five with a pair of conjugate complex 

critical points, which is of Liénard equation of type (4, 3) as fol- 

lows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 

dt 
= y, 

dy 

dt 
= −x 

(
x 2 − x + 

1 

2 

)
(x + 1) + ε(a + bx + cx 2 + dx 3 ) y 

(1.3) 

with Hamiltonian 

H(x, y ) = 

1 

2 

y 2 + 

1 

5 

x 5 − 1 

6 

x 3 + 

1 

4 

x 2 , (1.4) 

where 0 < | ε| � 1, a , b , c and d are real bounded parameters. 

The closed connected component of a level curve { (x, y ) ∈ 

R 2 | 1 2 y 
2 + 

1 
5 x 

5 − 1 
6 x 

3 + 

1 
4 x 

2 = h, h ∈ (0 , 13 
60 ) } forms the period orbit 

γ h , the continuous band of which is called period annulus P, the 

inner boundary is a non-degenerate center O (0, 0) and the outer 

Fig. 1. The level curves of system (1.3) ε=0 . 

boundary is a homoclinic loop connecting to a hyperbolic saddle 

S(−1 , 0) . See Fig. 1 . 

With the above approaches to solve the SASs which derive from 

the Chebyshev criterion to the Abelian integral, we get 

Theorem 1.1. For any sufficiently small ε, the perturbed Hamiltonian 

system (1.3) could give rise to at most six limit cycle bifurcating from 

the compact period annulus of system (1.3) ε=0 . 

We remark here among the eleven families of hyperelliptic 

Hamiltonian centers of degree five topologically, the reason why 

we consider the perturbation ε(a + bx + cx 3 + x 4 ) y ∂ 
∂ x 

from the 

above center, which bases on a hypothesis that the number of limit 

cycles by perturbing a center has positive correlation to that of the 

critical periods assigning to the period annulus. Conjecture 4.1 im- 

plies that concerning the weakened Hilbert’s 16th problem, in ad- 

dition to the case the integrable system has more period annuli, 

it is prior to consider the one that has more critical periods. See 

Section 4 for more details. 

Note that the period annulus of unperturbed system (1.3) ε=0 

surrounds a non-degenerate center whose outer boundary is a hy- 

perbolic saddle loop. Roussarie’s theorem [18] implies that the up- 

per bound of number of isolated zeroes of I ( h ) covers the number 

of limit cycles bifurcating from the non-degenerate center, from 

the period annuls and from the homoclinic loop connecting to a 

hyperbolic saddle, therefore we have the following corollary. 

Corollary 1.1. For any sufficiently small ε, the perturbed Hamiltonian 

system (1.3) could have at most six limit cycles in the finite phase 

plane enclosing the origin. 

The rest of the paper is organized as follows. Section 2 is 

devoted to introducing some preliminary definitions and testing 

methods about Chebyshev properties for Abelian integral, symmet- 

ric polynomial. The proof of Theorem 1.1 is given in Section 3 , by 

using the algebraic criterion to Abelian integral proposed in [4,5] , 

a hyperelliptic Hamiltonian of degree five with a pair of conjugate 

complex critical points could have at most six limit cycles at fi- 

nite phase plane, the keypoints of the proof is to solve the as- 

sociated SASs, a complete and practical approach combines with 

symbolic computation by real-root isolation and numerical com- 

putation. Some related works are commented and remarked in 

Section 4 , where we pose a conjecture that the more critical pe- 

riods of the unperturbed system have, the more limit cycle by per- 

turbing a center might bifurcate. The results of some works on es- 

timating the number of isolated zeroes of Abelian integral is not 

reliable, due to by using numerical approximation. In Section 5 , 

we comment some drawbacks by applying the algebraic criterion 

for Abelian integral. Some introductions about the solving of SAS 

are shown in Appendix . 

2. Preliminary definitions and methods 

In order to prove Theorem 1.1 , some definitions and preliminary 

theorems and lemmas are needed, the reader is referred to [4,5,16] 

for more details. 
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