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a b s t r a c t 

The mixing of different types of bifurcations, i.e. supercritical Andronov–Hopf (SAH), double loop (DL) and 

saddle-loop (SL) bifurcations in the vicinity of their total annihilation, is examined on the highly nonlin- 

ear six-variable model for the Bray–Liebhafsky (BL) oscillatory reaction under continuously well-stirred 

tank reactor (CSTR) conditions. For this kind of the reaction system where the law of mass conservation is 

additional constraint that must be satisfied and where because of that, some simple bifurcations cannot 

be formed independently to the others, the considered transformations of the bifurcations are particularly 

important. That is why as the control parameters for bifurcation analysis, the specific flow rate (j 0 ), as 

well as the inflow hydrogen peroxide concentration (h = [H 2 O 2 ] in ), were used. The complex bifurcations 

obtained from numerical simulations are compared with some experimental results. It was shown that 

these complex bifurcations cannot be easily recognized in experimental investigations without knowing 

their evolution. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In almost all complex nonlinear reaction systems with feedback, 

when they are far from thermodynamic equilibrium, numerous dy- 

namic states can be found [1–10] . Despite the corresponding state 

space such systems should be mostly in stable steady states, there 

are lots of them (particularly in biological and social sciences, in- 

cluding population phenomena) which are always in various peri- 

odic and aperiodic oscillatory dynamic states. Such are the double 

oscillatory evolution of endocrine hormones at humans with dif- 

ferent periods on the ultradian and circadian levels [11–14] , neu- 

ral spiking and bursting [15] , oscillations of glycolytic intermedi- 

ates [16] , heart beating, fluctuations in the density of population 

of Paramecium aurelia and Saccharomyca exiguous [17] , etc. In these 

systems the transition from one to the other dynamic states can 

be of vital importance for their existence [11–15] . Therefore, we 

need to examine qualitative changes in the dynamics ( bifurcations ) 

and the parameter values at which they occur ( bifurcation points ). 

As already mentioned, dynamical systems are very complex; some 

simpler systems such as oscillatory chemical reactions are more 

appropriate models for the analysis of bifurcations. 

In general, bifurcations are important phenomena that 

provide scenario of transitions between dynamic states and 
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emerging of instabilities as some control parameter (the spe- 

cific flow rate, the inflow concentration of the feed substances, 

temperature, etc.) is varied. The most examined and most fre- 

quently encountered are bifurcations that appear when the stable 

steady state becomes unstable and vice versa . The most common 

representatives of such transitions are the supercritical and sub- 

critical Andronov–Hopf, saddle-loop (SL) 1 , saddle-node infinite period 

(SNIPER) 2 and double loop (DL) 3 bifurcations [1–10,14,15,18–53] . 

Their determinations in the reaction systems are based on the 

examinations of Maselko and other authors [24–39,50] founded 

on the Poincaré–Andronov–Hopf theoretical investigations of 

two-variable systems [18–20] . They explained how the men- 

tioned bifurcations can be identified experimentally by means 

of the amplitudes (A) and the oscillatory period ( τ ) of the peri- 

odic orbits, emerging in the bifurcation point, together with the 

presence/absence of hysteresis in region of bifurcation. For this 

purpose, they also analyzed both, the limit values of A and τ in 

the bifurcation point, as well as scaling laws near the bifurcation 

point governing their values as the function of the distance from 

bifurcation point. Position of the dynamical system is given by 

1 also known as infinite period bifurcation [52] , homoclinic [36,53] , or saddle- 

homoclinic bifurcation . 
2 also known as saddle-node on the invariant circle (SNIC) and as saddle-node 

central homoclinic bifurcation [53] . 
3 also known as loop-loop, jug handle or stable-unstable limit cycle bifurcation [35] . 
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Table 1 

Characteristics of different types of bifurcations (supercritical Andronov–Hopf, SAH, saddle-loop, SL and saddle-node infinite period, SNIPER bifurcation) [4,9,24,35–37,39] 

Type of bifurcation Characteristics of A a and τ b in the 

bifurcation point 

Dependence of A and τ on �μc or δd 

near the bifurcation point 

Existence of hysteresis 

Supercritical Andronov–Hopf (SAH) [4,9,24,35,37,39] A → 0 A ∝ �μ1/2 No 

τ → finite value τ ∝ �μ

Saddle-loop (SL) [9,35–37,39] A → finite value Yes 

τ → ∞ τ ∝ ln δ

Saddle-node infinite period (SNIPER) [37,39] A → finite value No 

τ → ∞ τ =δ−1/2 

a Amplitude of oscillations. 
b Period of oscillations. 
c Bifurcation parameter displacement �μ= | μ−μc |, i.e. absolute value of the control parameter μ distance from its value in bifurcation point μc . 
d Dimensionless value of the bifurcation parameter displacement δ= | μ−μc |/ μc . 

the control parameter μ having the value μc in bifurcation point. 

The distance of the dynamical system from bifurcation point is 

given by the bifurcation parameter displacement, �μ= | μ−μc | 

or its dimensionless value δ= | μ−μc |/ μc . The behaviour of the 

nonlinear reaction system in the vicinity of bifurcation point 

for supercritical Andronov–Hopf (SAH), SL and SNIPER types of 

bifurcations is presented in Table 1 . Thus, the SAH bifurcation 

can be recognized when in the vicinity of the bifurcation point, 

the amplitude of oscillations (A) is linearly proportional to the 

square root of the control parameter value ( μ). By extrapolation 

of this interdependence on zero amplitude, the exact value of the 

control parameter at the bifurcation point ( μc ) can be determined. 

There, the oscillation period ( τ ) has finite value, whereas there is 

linear dependence between τ and control parameter in vicinity 

of bifurcation point. Besides, no hysteresis is observed [4,9,35,39] . 

The saddle-node infinite period (SNIPER) as well as SL bifurcation 

are both characterized by abrupt vanishing of large-amplitude 

oscillations in the vicinity of the bifurcation point as the control 

parameter is being varied [9,27,35–37,39] . These bifurcations differ 

from each other by different relationships between period of oscil- 

lations and bifurcation parameter displacement in the vicinity of 

the bifurcation point ( Table 1 ). Besides, the presence of hysteresis 

in SL bifurcation distinguishes SL from the SNIPER bifurcation, 

where hysteresis is not found. In reaction systems, the subcritical 

Andronov–Hopf (sAH) and the DL bifurcations are in combination 

with each other due to the mass conservation. Although, their 

mathematical definitions are clear for each separately [50] , they 

will be discussed in the following together (see Section 4 ). 

Moreover, bifurcations can be examined as a function of two or 

more control parameters. The bifurcation, well defined as a func- 

tion of the first selected parameter, can be essentially transformed 

or even destroyed under influence of the other parameter(s). Con- 

sequently, the related bifurcation point can be only slightly shifted, 

but can also disappear under influence of other control parame- 

ter(s). 

Besides, in chemical, physico-chemical and biochemical reac- 

tion systems, where the concentrations of independent interme- 

diate species play the role of variables, their number is mostly 

larger than two. Moreover, in these nonlinear reaction systems, 

the combinations of simple bifurcations are required by the law 

of mass conservation. Therefore, in such systems the identifica- 

tion of bifurcations types is not as simple as in prototype math- 

ematical models, and their interesting merging as well as tran- 

sitions between them must be carefully analyzed. We intend to 

show that beside the methods proposed by Maselko and other au- 

thors, the process of formation of complex bifurcations with re- 

spect to at least two control parameters (historical development) 

is also necessary. Thus, by analyzing well-known bifurcations that 

appear in the model of the Bray–Liebhafsky (BL) oscillatory reac- 

tion, we have unexpectedly found very interesting transformations 

of SAH bifurcation into some complex bifurcation consisted of one 

SAH and two double-loop (DL) ones, as well as one kind of their 

annihilation in combination with other complex bifurcation emerg- 

ing by mixing the other SAH and the SL one. 

2. The model of the Bray–Liebhafsky oscillatory reaction 

The BL oscillatory reaction [54,55] , that is, the hydrogen per- 

oxide decomposition in the presence of both, iodate and hydrogen 

ions: 

2 H 2 O 2 

IO −3 , H 
+ 

−−−−→ 2 H 2 O + O 2 

is complex nonlinear process in which the numerous intermediate 

species, such as I 2 , I −, HIO, HIO 2 and I 2 O, take place. If this reac- 

tion is performed in the open reactor, more precisely in the contin- 

uously well-stirred tank reactor (CSTR), where the inflow of basic 

constituents (here hydrogen peroxide) and outflow of all species 

is present, the time evolution of their concentrations can be de- 

scribed by the following set of differential equations based on the 

earlier proposed model [56] ( Appendix 1 ) and mass-action kinetics 

[57,58] : 

d x 1 
d t 

= −k 5 x 1 x 4 − k 6 x 1 x 6 − k 7 x 1 x 5 − k 8 x 1 + j 0 h − j 0 x 1 (1a) 

d x 2 
d t 

= k 4 x 3 x 4 − k 11 x 2 − j 0 x 2 (1b) 

d x 3 
d t 

= −k 1 x 3 − k 2 x 3 x 5 − k 4 x 3 x 4 + k 5 x 1 x 4 + k 9 x 4 x 5 + k 11 x 2 − j 0 x 3 

(1c) 

d x 4 
d t 

= k 1 x 3 + 2 k 3 x 6 − k 4 x 3 x 4 − k 5 x 1 x 4 + k 6 x 1 x 6 − k 9 x 4 x 5 

− 2 k 10 x 
2 
4 + k 11 x 2 − j 0 x 4 (1d) 

d x 5 
d t 

= k 1 x 3 − k 2 x 3 x 5 + k 6 x 1 x 6 − k 7 x 1 x 5 + k 8 x 1 − k 9 x 4 x 5 − j 0 x 5 

(1e) 

d x 6 
d t 

= k 2 x 3 x 5 − k 3 x 6 − k 6 x 1 x 6 + k 10 x 
2 
4 − j 0 x 6 (1f) 

Here x i ( i = 1 −6) denotes the concentration of species X i , that is 

H 2 O 2 , I 2 , I −, HIO, HIO 2 and I 2 O, respectively; h, k m 

( m = 1–11) 

and j 0 denotes the inflow hydrogen peroxide concentration, the 

rate constants and a specific flow rate, respectively. The concen- 

trations x i ( i = 1 −6) and h are given in mol × dm 

−3 i.e. M, whereas 

the rate constants k m 

( m = 1–11), as well as j 0 , have dimensions 

which provide that each term in Eq. (1) has dimensions of reac- 

tion rates, that is, concentration × time −1 , here given in: M ×
min 

−1 (see Appendix 1 ). In these equations k m 

, j 0 and h are pa- 

rameters, whereas x i is variable. Thus, we are dealing with the six- 

dimensional system where under defined conditions all six vari- 

ables can be in the oscillatory dynamic states [56,59–61] . 
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