
Chaos, Solitons and Fractals 87 (2016) 92–101 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Robust synchronization of impulsively coupled complex dynamical 

network with delayed nonidentical nodes 

Tianhu Yu 

a , Dengqing Cao 

a , ∗, Yang Yang 

a , Shengqiang Liu 

b , Wenhu Huang 

a 

a School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150 0 01, P. R. China 
b The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 3041#, Harbin 150080, P.R. China 

a r t i c l e i n f o 

Article history: 

Received 22 October 2015 

Revised 24 January 2016 

Accepted 8 March 2016 

Available online 28 March 2016 

Keywords: 

Impulsively coupled complex dynamical 

network 

Nonidentical node 

Robust synchronization 

Hybrid control 

a b s t r a c t 

In this paper, the problem of designing the hybrid control for synchronization of impulsively coupled 

complex dynamical network is investigated. A general delayed impulsively coupled network with non- 

identical nodes and parameter uncertainties is presented. Based on a time varying Lyapunov function 

associated with the impulsive time sequence and Razumikhin technique, a convex combination tech- 

nique is employed to obtain the global synchronization criteria in terms of linear matrix inequalities. 

The derived sufficient conditions for synchronization are closely related to the coupling structure of the 

network, the lower and upper bound of the adjacent impulsive instant difference, and the impulsive con- 

trol input strength. The control scheme can be obtained by solving a set of linear matrix inequalities. 

Typical numerical examples are presented to demonstrate the validity of the theoretical results and the 

effectiveness of the control strategy. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

As well known, complex dynamical networks are collection of 

dynamical systems [1] . The complex topological properties can be 

demonstrated by the connected nodes which are the fundamen- 

tal units with identical/nonidentical contents. As the major collec- 

tive behavior, the synchronization of complex systems or chaotic 

systems has been extensively investigated because there are practi- 

cal problems to be solved by applying the complex dynamical net- 

works in the real world. For example, in mammalian brains, some 

neurons have been surveyed to oscillate in synchrony. The absence 

of such synchronization may cause unconscious physical tension, 

when goals cannot be recognized 

nor worked toward because the members are ‘out of sync’ [2–

4] . In addition, it has been reported that synchronization of two 

chaotic systems is possible and has potential practical applications 

in secure communications [5] . Several computer networks also can 

be illustrated and analyzed by complex dynamical networks, such 

as the World Wide Web, food web, power grid, telephone call 

graphs, etc. 

In order to obtain synchronization of complex dynamical net- 

works with continuous coupling, various control methods, includ- 

ing adaptive control [6–8] , pinning control [9,10] , sampled-data 
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control [11,12] , intermittent control [13,14] , and output synchro- 

nization [15] have been proposed to synchronize the complex dy- 

namical networks. Recently, impulsive control method has been 

widely used to describe the real phenomenon, such as pest con- 

trol in agriculture [21] , the impulsive HIV dynamics [22,23] , the 

diabetic patient model [22] , and predator-prey model with stage- 

structure [24] , etc. As discussed in [21] , integrated pest manage- 

ment (IPM) is a sustainable method in pest control in agriculture. 

The key factor of utilizing IPM is a comprehension of the ecology 

of the cropping system, including that of the pest, their natural 

enemies, the natural environment and the inter-relationships. Si- 

multaneously, the human actions including spraying pesticides, re- 

leasing natural enemies and infected pests in IPM can be achieved 

instantaneously or within a short period. Therefore, the impulsive 

control method can be used to describe the human action and de- 

termine the optimal time of the implementation of human actions 

in the IPM. The physical insight of the impulsive control method is 

the sudden change or the ‘jump’ of the system states. Additionally, 

the implementation of the impulsive effects turns out to be very 

simple and convenient in these systems. For instance, in the inte- 

grated pest management (IPM), to spray pesticides at the optimal 

time can be seen as the implementation of the impulsive effects 

[21] . In the Bergman’s model [22] , to inject insulin at certain time 

to maintain the glucose level also can be viewed as the implemen- 

tation of the impulsive effects. 

Because of the effectiveness, economy and convenience of the 

implementation, the impulsive control strategy [16–20] has been 
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widely designed to address the synchronization issue of the com- 

plex dynamical networks. For instance, by employing the con- 

cepts of both joint connectivity and sequential connectivity [18] , 

the complex dynamical networks can be synchronized even if the 

topology is not connected at any time instant. Using the concept 

of average impulsive interval, new synchronization criteria via im- 

pulsive control strategy have been derived [19] for switched neu- 

ral networks with unbounded distributed delays. Based on the 

theory of impulsive functional differential equations and linear 

matrix inequality method, dual-stage impulsive control method 

[20] has been proposed to guarantee the synchronization of a class 

of chaotic delayed neural networks with parametric uncertainties. 

Particularly, in order to avoid the implementation difficulty of the 

controller, the control topology in terms of impulsive distributed 

control has been proposed [25] to synchronize the complex net- 

works with continuous coupling. Since then, the applications of the 

control topology along with impulsive distributed control method 

have further developed [26–30] , and reference therein. 

In the view of practice, several systems are coupled at fixed 

discrete instants only, such as the species-food model in biology, 

the information transfer and exchange in ants, and the model of 

integrated circuit [36] . These systems are coupled at discrete in- 

stants through impulsive connections , rather than coupled with 

continuous connections. As a consequence, investigation on the 

synchronization for the impulsively coupled systems has received 

considerable attention [31–40] . A model for impulsively coupled 

systems has been first proposed in [36] , and sufficient condi- 

tions for synchronization of dynamical networks have been de- 

rived. Robust delay-independent synchronization criteria have been 

obtained [38] for a general uncertain impulsively coupled switched 

network with time delays. By employing the partial contraction 

theory of impulsive systems and by studying the contraction analy- 

sis of impulsive coupled oscillators, general criteria have been pre- 

sented [39] for synchronization of impulsive coupled oscillators. 

As a typical class of impulsively coupled system, the synchroniza- 

tion/consensus problems of multi-agent/multibody systems with 

impulsive control have been widely investigated in [31–35] . For 

instance, based on the local information of agent, an impulsive 

control protocol is designed for consensus of multi-agent systems 

[35] with/without switching topologies. The problem of output 

consensus is studied [32] by impulsive control method for multi- 

agent systems with passive system agents. A procedure for inves- 

tigating impulsive synchronization motion is given in [34] to syn- 

chronize the networked multibody systems described by Lagrange 

dynamics. Clearly, the impulsive effects in [25–35] can be viewed 

as synchronizing impulsive effects, and the impulses in [36–40] are 

desynchronizing impulsive effects. 

Clearly, one can observe that the nodes in the impulsively 

coupled networks discussed in [25–27,30–40] are identical. How- 

ever, in biology and engineering networks, it is unreasonable 

to assume that all nodes are identical in a complex dynamical 

network because individuals inside a network usually have dif- 

ferent physical parameters [41] . For example, the nodes in the 

genetic oscillator networks, even in the same species, are usu- 

ally nonidentical because of both heterogeneous nutrition status 

and fluctuated circumstances [13] . Clearly, the synchronization cri- 

teria for complex dynamical networks with identical nodes can- 

not be used to guarantee the synchronization of the complex dy- 

namical networks with nonidentical nodes. Consequently, study- 

ing new synchronization criteria for networks with nonidenti- 

cal nodes has received much attention, and several results have 

been reported in [1,13,42–45] and references therein. However, 

in the existing literature, few investigation has been involved to 

obtain the synchronization criteria for impulsive coupled com- 

plex networks with nonidentical nodes under desynchronizing 

impulses. 

In view of this, the synchronization problem of delayed im- 

pulsively coupled network with nonidentical nodes is investigated 

in this paper. The aim is to design a hybrid control strategy to 

exponentially synchronize the impulsively coupled networks with 

parameter uncertainties. Inspiring by the method developed in 

[29,46] , a time varying Lyapunov function associated with impul- 

sive time sequence and a convex combination technique are em- 

ployed to obtain the synchronization criteria in terms of linear ma- 

trix inequalities. The local impulsive control gain can be obtain by 

solving the corresponding linear matrix inequalities. In addition, 

the results in this paper can be used to guarantee the synchro- 

nization of impulsively coupled network without any control in- 

put. Numerical examples are given to illustrate that the impulsively 

coupled network with nonidentical nodes can be synchronized by 

the proposed control scheme effectively. The rest of this paper is 

organized as follows. Some notations, definitions, lemmas are in- 

troduced in Section 2 . The synchronization problem of impulsively 

coupled network is investigated in Section 3 . Typical numerical ex- 

amples are presented in Section 4 . The conclusion is finally drawn 

in Section 5 . 

2. Preliminary 

Notation : Let R denote the set of real numbers, Z + denote 

the set of positive integers, and R 

n denote the n -dimensional real 

space with the Euclidean norm ‖ · ‖ . ⊗ represents the Kronecker 

product. M > 0( < 0) denotes that the matrix M is symmetric 

positive(negative) definite. The notations M 

T and M 

−1 mean the 

transpose of M and the inverse of a nonsingular matrix M , respec- 

tively. λ( M ) represents the eigenvalue of the matrix M. λmin ( M ) 

and λmax ( M ) represent the minimal eigen value and the maxi- 

mal eigen value of the symmetrical matrix M , respectively. I de- 

notes the identity matrix of appropriate dimension. � = { 1 , . . . , N} 
and diag i ∈ �{ M i } = diag{ M 1 , . . . , M N } . Let the notation � denote the 

symmetric block in a symmetric matrix. For any interval J ⊆ R , 

P C = { ψ : J → R 

n is continuous everywhere except at finite num- 

ber of point t , where ψ (t + ) , ψ (t −) exist and ψ(t + ) = ψ(t) } . For 

ς ∈ P C ( [ −τ, 0] , R 

n ) , define ‖ ς ‖ = sup −τ≤s ≤0 ‖ ς(s ) ‖ . 
Consider the delayed impulsively coupled complex dynam- 

ical network with N nonidentical nodes and uncertainties as 

following ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x i = D i x i (t) + 

˜ A i f i (x i (t)) + ̃

 A id f i (x i (t − τi (t))) + u ic (t) , t 	 = t k , 

�x i (t k ) = C k 

(
N ∑ 

j=1 

g i j x j (t 
−
k 
) 

)
+ u id (t 

−
k 
) , t = t k , 

x i (s ) = φi (s ) , s ∈ [ −τ, 0] , 

(1) 

where i, j ∈ �, x i (t) ∈ R 

n is the state vector, f i ( x i ( t )) is a general 

continuous vector function. τ i ( t ) is a time delay function with 

0 ≤ τ i ( t ) ≤ τ , where τ > 0 is a real scalar. ˜ A i = A i + �A i and 

˜ A id = A id + �A id are real matrices with uncertainties. C k is a n 

× n impulsive matrix. G = 

(
g i j 

)
N×N 

denotes the coupling matrix. 

g i j = g ji > 0 if there exists a connection between the node i and 

the node j ( j 	 = i ), otherwise g i j = g ji = 0 . For the dynamical 

network (1) , it requires that g ii = −∑ N 
j=1 , j 	 = i g i j . 

The impulsive time sequence { t k } k ≥ 1 satisfies t 0 < t 1 < t 2 < ���
with lim 

k →∞ 

t k = ∞ and x (t −
k 
) = lim 

h → 0 −
x (t k + h ) . There exist constants 

δ1 > 0 and δ2 > 0 such that δ1 ≤ t k +1 − t k ≤ δ2 for k ∈ Z + . 

Remark 1. In the impulsively coupled network (1) , each node can 

have different time varying delay and different node dynamics. 

Consequently, the model in this paper can represent variety of dy- 

namical networks. Particularly, if the function f i = f, the matri- 

ces D i = D, ˜ A i = 

˜ A , and 

˜ A id = 

˜ A d for all i ∈ �, the synchronization 

problem of impulsively coupled network (1) can be viewed as the 
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