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a b s t r a c t 

This paper addresses the synchronization of nonlinear drive and response systems under input satura- 

tion and subject to input time-delay. In considering generalized forms of the systems, their dynamics 

are assumed to satisfy the one-sided Lipschitz condition along with the quadratic inner-boundedness 

rather than the conventional Lipschitz condition. Further, the time-delays are handled by applica- 

tion of the delay-range-dependent methodology, rather than the delay-dependent one, utilizable for 

both short and long time-delays. Synchronization controller designs are provided by application of the 

Lyapunov–Krasovskii functional, local sector condition, generalized Lipschitz continuity, quadratic inner- 

boundedness criterion and Jensen’s inequality. To the best of the authors’ knowledge, a delay-range- 

dependent synchronization control approach for the one-sided Lipscitz nonlinear systems under input 

delay and saturation constraints is studied for the first time. A convex-routine-based solution to the con- 

troller gain formulation by application of recursive nonlinear optimization using cone complementary 

linearization is also provided. The proposed methodology is validated for synchronization of modified 

Chua’s circuits under disturbances by considering the input delay and saturation constraints. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Synchronization of complex nonlinear systems, made possi- 

ble by means of a feedback controller, has vast applications in 

robotics, secure communications, image processing, avionics, infor- 

mation processing, and biomedical networks [1–5] . The main pur- 

pose of synchronization control is to establish a coherent behavior 

between the drive and response systems by applying a feedback 

of the difference between the states or outputs [6–8] . Different 

control schemes and tools for synchronization of nonlinear sys- 

tems have been realized: Nonetheless, selection of a synchroniza- 

tion controller and type of control methodology depend on the cir- 

cumstances and actual environment, which often vary from case 

to case. For instance, adaptive controllers are used for adaptation 

of wide-ranging unknown parameters, as seen in [9] . Robust con- 

trollers, meanwhile, are applicable to fast-varying changes and per- 

turbations, as demonstrated in [10] . Constrained controllers are 

employed to deal with input, state or output restraints such as 
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saturation. Likewise, consensus controllers are designed to deal 

with specific communication and network protocols (see [11,12] ). 

Output and state feedback controllers are employed according to 

the availability of states and outputs. Observer-based controllers 

are preferable to attain the advantages of the state feedback ap- 

proaches when the states are unknown [13] . Disturbance-observer- 

based controllers are utilized for adaptive cancellation of unknown 

matching disturbances [14] . Controller design for effectual synchro- 

nization remedy of nonlinear systems is still a thought-provoking 

research area, especially in view of system dynamics, uncertainties, 

various constraints, and overall performance goals. 

Controllers for synchronization of nonlinear time-delay systems 

are designed to utilize time-delay data such as lower and up- 

per bounds, the rate of delay, and the number of delays appear- 

ing in the state, input or output. Conventional controllers for syn- 

chronization of nonlinear systems might not guarantee synchro- 

nization, because time-delays can cause oscillations and instabil- 

ity in the response of the synchronization error. Several attempts 

to synthesize synchronization controllers for time-delay systems 

have been made, exclusively by employing delay-independent and 

delay-dependent methods and by applying elusive delay-range- 

dependent techniques. For instance, two delay-dependent syn- 

chronization control methods for Lur’e systems based on delayed 
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feedback via the partitioning-interval approach were developed in 

[15] . Zhang et al . [16] utilized range-of-delay information to de- 

velop a global synchronization methodology for complex networks 

under stochastic disturbances. Fei and coauthors [17] followed the 

delay-partitioning approach in studying the coherent behavior of 

a complex network with interval time-varying delay coupling. Li 

et al . [18] utilized a novel Lyapunov function in their evalua- 

tion of a delay-range-dependent synchronization control mecha- 

nism for Lur’e systems. The work in [19] achieved the synchro- 

nization of chaotic systems with time-varying state delays and de- 

layed nonlinear coupling between the drive and response systems. 

Recently, Ma and Jing [20] developed, by means of a local sector 

condition, a delay-independent state-feedback control approach for 

synchronization of uncertain nonlinear systems with time-varying 

state delays and input saturation. More recently, Cai and coworkers 

[21] have reported delay-dependent synchronization conditions of 

singularly perturbed systems with coupling delays. 

Works on the delay-range-dependent stability investigation, 

control and synchronization proficiencies (owing to their utilities 

for dealing with short as well as long time-delays in the state, out- 

put, input or coupling between nonlinear systems) are proceeding 

apace. The literature on synchronization of the nonlinear systems 

using a delay-range-dependent approach by incorporating the in- 

put saturation nonlinearity and time-delays, however, is deficient. 

There are two major issues with the existing synchronization tech- 

niques for the nonlinear time-delay systems. First, most of the 

above-mentioned studies employ a conservative continuity condi- 

tion like the conventional Lipschitz condition for the derivation of 

the synchronization control strategies. The literature of mathemat- 

ics has developed a less conservative one-sided Lipschitz condition, 

which can be used to represent the Lipschitz nonlinear systems as 

a specific case of the one-sided Lipschitz nonlinear systems. More- 

over, the one-sided Lipschitz constant may have a smaller value 

than the Lipschitz constant, which fact can be more effectively ap- 

plied for derivation of the controllers to synchronize nonlinear os- 

cillators with large or region dependent Lipschitz constants. Sec- 

ond, the input saturation nonlinearity cannot be ignored in practi- 

cal systems because an untreated saturation nonlinearity can lead 

to oscillations, lags, overshoots, undershoots, performance abase- 

ment, and divergence of the closed-loop system response. For syn- 

chronization of the nonlinear systems under input time-delays, 

dealing with the saturation consequences is a non-trivial research 

dilemma owing to simultaneous considerations of the input satu- 

ration and the input delay effects. 

This paper introduces controller design for synchronization of 

nonlinear systems under input saturation and subject to input 

time-delay varying within an interval of known lower and upper 

bounds. By utilizing the Lyapunov–Krasovskii (LK) functional, one- 

sided Lipschitz condition, quadratic inner-boundedness, the range 

of the input delay, the limit on the derivative of the delay, the local 

sector condition for input saturation and Jensen’s inequality, non- 

linear matrix inequalities are derived to determine an appropriate 

controller gain matrix, specifically by providing an estimate of the 

region of stability in terms of synchronization error. From these 

principal design conditions, novel synchronization controller de- 

sign conditions for Lipschitz nonlinear systems, both for the delay- 

dependent case and for the scenario of an unknown bound on 

the delay-rate, are derived. Moreover, the proposed method is ex- 

tended for robust synchronization of nonlinear systems under in- 

put lag and saturation by considering the L 2 norm-bounded pertur- 

bations in evaluating the allowable bound of the disturbance and 

disturbance attenuation level at the state estimation error. 

The main contributions of the paper are summarized as fol- 

lows: (i) To the best of our knowledge, delay-range-dependent syn- 

chronization of the nonlinear systems under input saturation and 

input delay, to deal with the practical limitations of actuators, is 

addressed for the first time. (ii) An inaugural treatment of syn- 

chronization of time-delay in one-sided Lipschitz nonlinear sys- 

tems is provided. Such an approach is less conservative and can 

be employed to synchronize a broader class of nonlinear systems 

than the conventional Lipschitz systems. (iii) An estimate of the 

region of stability in terms of the difference between initial con- 

ditions of the nonlinear master-slave systems under input delay 

and saturation is provided. (iv) A robust synchronization method 

for time-delay nonlinear systems with one-sided Lipschitz nonlin- 

earities, input delay, input saturation, and external perturbations is 

explored. In this regard, an upper bound on the L 2 norm of the 

synchronization error in terms of the initial condition and distur- 

bances and the region in which the synchronization error remains 

bounded are revealed. 

Additionally, a numerically tractable approach is outlined for 

determining the synchronization controller gain matrix, parame- 

ters representing the ellipsoidal region of stability, and scalars to 

constitute bounds on the synchronization error by utilizing the 

cone complementary linearization algorithm. Finally, a numeri- 

cal simulation example is provided to demonstrate the effective- 

ness of the proposed methodology for synchronization of input- 

constrained modified chaotic Chua’s circuits in the presence of in- 

put delays and disturbances. 

This paper is organized as follows: the drive and response sys- 

tems are described in Section 2 . In Section 3 , various synchroniza- 

tion controller designs for dealing with nonlinearities, delays, in- 

put saturation and disturbances are introduced. In Section 4 , sim- 

ulation results are provided. Concluding remarks are rendered in 

Section 5 . 

Standard notation is used in this paper. A block diagonal matrix 

is denoted as diag ( x 1 , x 2 , . . . , x m 

) , where x 1 , x 2 , . . . , x m 

are entries 

at the corresponding diagonal blocks. L 2 norm for a vector x ∈ R n 

is represented as ‖ x ‖ 2 and the i th row of a matrix A is assigned 

as A ( i ) . 〈 w, v 〉 represents the inner product between two vectors 

w and v of matching dimensions. The saturation nonlinearity is 

defined by �(i ) ( u (i ) ) = sgn ( u (i ) ) min ( ̄u (i ) , | u (i ) | ) for the saturation 

bound given as ū (i ) > 0 . Positive definite and positive semi-definite 

matrices are represented as Y > 0 and Y ≥ 0, respectively, for a 

symmetric matrix Y . 

2. System description 

Consider a master (or drive) system 

d x m 

dt 
= A x m 

+ f (t, x m 

) + d 1 , 

y m 

(t) = C x m 

, (1) 

where x m 

∈ R n , y m 

∈ R p and d 1 ∈ R m represent the state, output 

and disturbance vectors, respectively. A and C are constant matri- 

ces of appropriate dimensions, and f ( t, x m 

) ∈ R n denotes the non- 

linear dynamics in the system. The slave (or response) system is 

given by 

d x s 

dt 
= A x s + f (t, x s ) + B �(u (t − τ )) + d 2 , 

y s (t) = C x s , (2) 

where x s ∈ R n , y s ∈ R p , u ∈ R q and d 2 ∈ R m are the state, output, 

control input and disturbance to the response system, respectively, 

B is the input matrix, and �( u ) is the input saturation vector- 

function. The input time-delay satisfies 

0 ≤ τ1 ≤ τ (t) ≤ τ2 , (3) 

˙ τ (t) ≤ μ. (4) 

Assumption 1. The function f ( t, x m 

) satisfies the one-sided Lips- 

chitz condition given as 

〈 f (t, x m 

) − f (t, x s ) , x m 

− x s 〉 ≤ ρ‖ 

x m 

− x s ‖ 

2 
(5) 
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