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a b s t r a c t 

We deal with the problem of pricing barrier options on an underlying described by the mixed fractional 

Brownian model. To this aim, we consider the initial-boundary value partial differential problem that 

yields the option price and we derive an integral representation of it in which the integrand functions 

must be obtained solving Volterra equations of the first kind. In addition, we develop an ad-hoc nu- 

merical procedure to solve the integral equations obtained. Numerical simulations reveal that the pro- 

posed method is extremely accurate and fast, and performs significantly better than the finite difference 

method. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Empirical studies suggest to use the fractional Brownian mo- 

tion with Hurst exponent H ∈ (1/2, 1) to model the logarithmic 

returns of financial assets, the distribution of which is often char- 

acterized by self-similarity, heavy tails, long-range dependence and 

volatility clustering, see, e.g., [1–3] . Nevertheless, even if it is capa- 

ble of reproducing stylized facts of the stock market returns, the 

fractional Brownian motion turns out to be problematic when we 

have to price derivatives. In fact, the classical Itô calculus does not 

apply to the fractional Brownian motion, as it is neither a Markov 

process nor a semi-martingale. Thus, unlike what happens in the 

Black-Scholes market, it is not possible to construct a self-financing 

strategy yielding the risk-neutral price of financial options. In or- 

der to overcome this issue, [4,5] suggest to use the Wick calcu- 

lus, which allows one to construct Wick-self-financing strategies 

such that the fractional Black-Scholes market becomes arbitrage 

free, see, e.g., [4,5] . Notwithstanding, the definition of Wick-self- 

financing strategy is purely mathematical and does not have any 

economic interpretation, see, e.g., [6] . 

Another possible remedy to the shortcomings of the fractional 

Brownian motion is to model stock returns by the mixed fractional 

Brownian motion (MFBM, hereafter). The MFBM is a generalization 
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of the fractional Brownian motion obtained as a linear combina- 

tion of the fractional Brownian motion itself, see, e.g., [7–14] , and 

of the standard Brownian motion, see, e.g., [15] (for other possible 

generalizations of the fractional Brownian motion the interested 

reader is referred to [16–20] ). 

When the Hurst exponent, H , of the fractional Brownian mo- 

tion is greater than 

1 
2 , the MFBM turns out to be a long memory 

process of Gaussian type. Therefore, the MFBM is particularly suit- 

able for describing the logarithmic returns of the financial assets. 

Moreover, as proved in [21] , when H is taken in the range 
(

3 
4 , 1 

)
, 

the MFBM is also arbitrage-free, see, e.g., [22] . For this reason, the 

MFBM has been employed for pricing standard derivative contracts 

such as stock options [23–26] , currency options [27] , equity war- 

rants [28] and credit default swaps [29] . 

In this paper we consider the problem of pricing barrier op- 

tions when the underlying asset follows a MFBM. Barrier options 

are massively traded in the financial markets as they are usually 

cheaper than standard options, see, e.g., [30,31] . 

The price of a barrier option can be obtained solving an initial- 

boundary value partial differential problem in two independent 

variables. However, such a problem does not have an exact closed- 

form solution and thus some numerical approximation is required. 

To this aim, various kinds of discretization techniques could be 

employed, mainly finite difference methods (see, e.g., [32–35] ), fi- 

nite element methods (see, e.g., [36,37] and reference therein), and 

variational approaches (see, e.g., [38–41] and references therein). 

Nevertheless, despite the variety of algorithms available, the one 
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proposed in the present paper is the first numerical method devel- 

oped ad-hoc for pricing barrier options on an underlying described 

by the MFBM, at least to the best of our knowledge. 

In particular, we exploit the mathematical structure of the par- 

tial differential problem to be solved and we present an approxi- 

mation scheme that combines both analytical and numerical tech- 

niques. Precisely, first of all, using a variational approach, the par- 

tial differential problem is reduced to either a single or a system 

of two Volterra integral equations of the first kind (depending on 

whether one or two barriers are considered). Then, the integral 

equations obtained, which involve only one independent variable, 

are solved by means of a discretization method based on product 

integration, see, e.g., [42] . The main advantage of such an approach 

is that the barrier option price can be easily computed using a di- 

rect and fast forward recursion. 

The resulting procedure is tested on two different kinds of bar- 

rier options: a double-barrier put option and a single-barrier put 

option with lower barrier. These test cases reveal that the novel 

approach is extremely efficient from the computational standpoint. 

In fact, relative errors of order 10 −6 or even smaller can be ob- 

tained in just a few hundredths of a second. Moreover, as shown 

by numerical experiments reported in Section 6 , the proposed in- 

tegral approximation performs significantly better than the finite 

difference method. 

The reminder of the paper is organized as follows. Section 2 in- 

troduces the MFBM and the partial differential problem that allows 

one to compute barrier option prices. Section 3 outlines the inte- 

gral formulation of the partial differential problem considered in 

Section 2 . Section 4 performs the numerical approximation of the 

Volterra integral equations. Section 5 describes how to obtain bar- 

rier option prices. Section 6 presents and discusses the results of 

the numerical simulations. Section 7 concludes. 

2. The model 

Let us consider an asset whose price satisfies the stochastic dif- 

ferential equation: 

d S ( t ) = μS ( t ) d t + σ S ( t ) 
(
d B ( t ) + d B 

H ( t ) 
)

(1) 

with initial condition 

S ( 0 ) = S 0 (2) 

where μ is a constant drift parameter, σ is a constant volatility 

parameter, B is a standard Brownian motion and B H is a fractional 

Brownian motion with Hurst exponent H . It can be shown that if H 

∈ (3/4, 1) the process (1) and (2) yields long time persistence and 

absence of arbitrage and thus it is particularly suitable for model- 

ing asset prices. 

Let P ( t, S ) denote the price of a double-barrier put option with 

maturity T , strike price E , lower barrier S L and upper barrier S U 
on an underlying S ( t ) described by (1) and (2) . Note that we are 

focusing our attention on a financial option of put type, but the 

case of a call option is substantially analogous. 

Let us set 

P ( t, S ) = e −r ( T −t ) V ( t, x ) , x = ln ( S ) (3) 

where r is the (constant) spot interest rate, and let us define x 0 = 

ln ( S 0 ) . According to well-known results in mathematical finance, 

V ( t, x ) must satisfy the following partial differential equation for x 

∈ ( x L , x U ), see, e.g., [27] : 

∂V ( t, x ) 

∂t 
+ 

(
Hσ 2 t 2 H−1 + 

1 

2 

σ 2 
)
∂ 2 V ( t, x ) 

∂x 2 

+ 

(
r − Hσ 2 t 2 H−1 − 1 

2 

σ 2 
)
∂V ( t, x ) 

∂x 
= 0 (4) 

with boundary conditions: 

V ( t, x L ) = 0 , V ( t, x U ) = 0 (5) 

and final condition: 

V ( T , x ) = �( x ) (6) 

where 

�( x ) = max ( e x E − e x , 0 ) (7) 

with x L = ln ( S L ) , x U = ln ( S U ) and x E = ln ( E ) . 

We are interested in the solution of problem (4) –(6) at time 

t = 0 , which, using the Feynman-Kac theorem (see, e.g., [43] ), can 

be computed as follows: 

V ( 0 , x 0 ) = 

∫ x E 

x L 

�( x ) f ( 0 , x 0 , T , x ) dx (8) 

where f (0, x 0 , t, x ) is the probability of having S ( t ) = e x and S L < 

S ( τ ) < S U ∀ τ ∈ [0, t ] given S ( 0 ) = e x 0 . In the following, in order 

to keep the notation simple, we write f ( t, x ) instead of f (0, x 0 , t, x ) 

and the dependence of f on x 0 will be understood. 

According to well-known results (see, e.g., [43] ), the probabil- 

ity density function f can be obtained as the solution of the Kol- 

mogorov forward partial differential equation: 

∂ f ( t, x ) 

∂t 
−

(
Hσ 2 t 2 H−1 + 

1 

2 

σ 2 
)
∂ 2 f ( t, x ) 

∂x 2 

+ 

(
r − Hσ 2 t 2 H−1 − 1 

2 

σ 2 
)
∂ f ( t, x ) 

∂x 
= 0 (9) 

with boundary conditions: 

f ( t, x L ) = 0 , f ( t, x U ) = 0 (10) 

and initial condition: 

f ( 0 , x ) = δ( x 0 ) (11) 

where δ( ·) denotes the Dirac generalized function centered at · . 

The integral method which we propose in this paper in order to 

compute the barrier option price V (0, x 0 ) is based on problem (9) –

(11) . 

It is worth pointing out that the price of a single-barrier put op- 

tion can be obtained solving a partial differential problem that dif- 

fers from (9) –(11) only for the spatial domain. For example, if we 

want to price a single-barrier put option we need to solve (9) for 

x ∈ ( x L , + ∞ ) , with boundary conditions: 

f ( t, x L ) = 0 , lim 

x → + ∞ 

f ( t, x ) = 0 (12) 

and initial condition: 

f ( 0 , x ) = δ( x 0 ) (13) 

Problem (9) –(11) does not have a closed-form solution and thus 

some kind of numerical approximation is required. 

3. The integral formulation 

We derive a convenient integral formulation of problem (9) –

(11) . Let us start by considering two values t f and x f , at the mo- 

ment left unspecified, such that 0 ≤ t f ≤ T and x L ≤ x f ≤ x U . More- 

over, let us define 

�t f = 

{
( t, x ) ∈ R 

2 | 0 ≤ t ≤ t f , x L ≤ x ≤ x U 
}

(14) 

Then, let us consider the function 

q 
(
t, x, t f , x f 

)

= 

1 √ 

2 πσ 2 
(
t f − t + t 2 H 

f 
− t 2 H 

)e 
−

(
x f −x −r ( t f −t ) + σ

2 

2 ( t f −t + t 2 H 
f 

−t 2 H ) 
)2 

2 σ2 ( t f −t + t 2 H 
f 

−t 2 H ) (15) 
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