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a b s t r a c t 

We propose and analyze an antitumor model with combined immunotherapy and chemotherapy. Firstly, 

we explore the treatment effects of single immunotherapy and single chemotherapy, respectively. Results 

indicate that neither immunotherapy nor chemotherapy alone are adequate to cure a tumor. Hence, we 

apply optimal theory to investigate how the combination of immunotherapy and chemotherapy should 

be implemented, for a certain time period, in order to reduce the number of tumor cells, while min- 

imizing the implementation cost of the treatment strategy. Secondly, we establish the existence of the 

optimality system and use Pontryagin’s Maximum Principle to characterize the optimal levels of the two 

treatment measures. Furthermore, we calculate the incremental cost-effectiveness ratios to analyze the 

cost-effectiveness of all possible combinations of the two treatment measures. Finally, numerical results 

show that the combination of immunotherapy and chemotherapy is the most cost-effective strategy for 

tumor treatment, and able to eliminate the entire tumor with size 4.470 × 10 8 in a year. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Millions of people die from cancer every year. And worldwide 

trends indicate that millions more will die from this disease in the 

future [1] . Today the principal effort s are addressed to search new 

treatment strategies e.g., immunotherapy [2] , which attempts to 

stimulate the immune system to reject and destroy tumors. Im- 

munotherapy for cancer was first introduced by Rosenberg and 

his colleagues of National Institute of Health USA [3] . Initially im- 

munotherapy treatments involved administration of cytokines such 

as Interleukin [4] . Thereafter the adverse effects of such intra- 

venously administered cytokines [5] lead to the extraction of the 

lymphocytes from the blood and expanding in vitro against tu- 

mour antigen before injecting the cells with appropriate stimula- 

tory cytokines [6] . With advance of immunotherapy, adoptive cell 

transfer therapy (ACT) has already demonstrated a good develop- 

ment prospect [7] . It uses T cell-based cytotoxic responses to at- 

tack cancer cells. T cells that have a natural or genetically engi- 

neered reactivity to a patient’s cancer are generated in vitro and 
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then transferred back into the cancer patient. Recent clinical tri- 

als have manifested that adoptive cell transfer therapy with anti- 

tumor lymphocytes can cause cancer regression in approximately 

70% of patients with metastatic melanoma [8] . Therefore, in vitro 

manipulation of antitumor immunity may be used in the effective 

treatment of cancer patients [9,10] . 

Some models which describe the interactions between the im- 

mune system and a growing tumor have been developed (Bell 

[11] , Stepanova [12] , Michelson [13] , Forys [14] , Ciancio [15] ). Cat- 

tani, in 2010 [16] , considered a family of nonlinear models with 

non-monotonically time-varying coefficients to describe the asyn- 

chronous process of mutual learning of the tumour and the im- 

mune cells. d’Onofrio, in 2011 [17] , proposed a epigenetic es- 

cape mechanism that adaptively depends on the interactions per 

time unit between cells of the two systems to describe the com- 

petition between a tumor and the immune system. Kuznstsoz, 

in 1994 [18] , presented and analyzed a mathematical model of 

cytotoxic T lymphocytes (CTL) cells response to the growth of 

immunogenic tumor, and estimated the parameters of the tar- 

get model by using the experimental data of chimeric mice. The 

model exhibits abundant phenomena including ‘immunostimula- 

tion’, ‘sneaking through’ and ‘dormant state’ of the tumor growth. 

The model is given by ⎧ ⎨ 

⎩ 

dx 

dt 
= s + 

ρxy 

α + y 
− c 1 xy − d 1 x, 

dy 

dt 
= ry (1 − by ) − c 2 xy, 

(1.1) 
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Fig. 1. Phase portrait for system (1.1) . Labeling: A and C respectively denote two unstable saddle points E 0 and E 2 . B represents a stable focus E 1 . D is a stable node E 3 . 

where x denotes the number of immune cells with antitumour ac- 

tivity in the tumor site, y represents the number of tumor cells. 

The parameter values of system (1.1) come from literature [18] , and 

are estimated by using the experimental data of the chimeric mice. 

Their descriptions and estimated values are listed in Table A.1 ( see 

Appendix A ). 

Chemotherapy, as a conventional treatment, has become a part 

of therapy regimen of most tumor patients, and aims at shrink- 

ing primary tumors, slowing their growth, and killing tumor cells 

that may have metastasized to other parts of the body from the 

original, primary tumor. However, one of the defects of chemother- 

apy is that it also kills the normal fast dividing cells, which causes 

fearful side effects in patients. Recent clinical data have shown 

that combined immunotherapy with traditional chemotherapy has 

a more prominent effect in inhibiting tumor growth and length- 

ening patient survival times than either single chemotherapy or 

single immunotherapy [19] . Hence, Pillis adopted the numerical 

simulations to investigate the treatment effects of combined im- 

munotherapy and chemotherapy [20–22] . Afterward, optimal con- 

trol was applied to design the cancer therapeutic regimen with 

immunotherapy or chemotherapy [23] . Castiglione considered den- 

dritic cell transfection immunotherapy to describe the immune- 

cancer interaction, and characterized the optimal infusion dose of 

dendritic cells [24] . Bratus applied optimal control method to ob- 

tain an optimal chemotherapy regimen which makes tumor cells 

wipe out eventually [25] . 

The aim of this paper is to investigate how immunotherapy 

and chemotherapy should be implemented, for a certain time pe- 

riod, in order to reduce the number of tumor cells, while mini- 

mizing the total cost of the implementation of the two therapeutic 

strategies. Hence, we will introduce combined immunotherapy and 

chemotherapy to develop the model (1.1) , and consider the infu- 

sion dose of immune cells and the increment of drug concentration 

caused by chemotherapy as control variables. Further, we attempt 

to explore the existence of optimal combined immunotherapy and 

chemotherapy strategy, and apply numerical simulations to char- 

acterize an optimal combined treatment regimen. Finally, we will 

find out which strategy is the most cost-effective. 

2. Preliminaries 

In order to obtain our results, we first give the basic properties 

of system (1.1) . Obviously, system (1.1) has a tumor-free equilib- 

rium E 0 ( 
s 

d 1 
, 0) . At the tumor-free equilibrium E 0 , the Jacobian ma- 

trix becomes 

J(E 0 ) = 

[ 

−d 1 
ρx 0 
α

− c 1 x 0 

0 r − c 2 x 0 

] 

. 

The eigenvalues of system (1.1) linearized at E 0 are λ1 = −d 1 and 

λ2 = r − c 2 x 0 = 

rd 1 −c 2 s 

d 1 
. Since d 1 > 0, λ1 is always negative, then 

the tumor-free equilibrium E 0 is stable if and only if 

R = 

rd 1 
c 2 s 

〈 1 ⇔ s 〉 s c � 

rd 1 
c 2 

. (2.1) 

According to the parameter values in Table A.1 , by calculating, we 

can obtain R = 5 . 1860 > 1 and s c = 6 . 7418 × 10 4 . Since s is much 

less than s c , the tumor-free equilibrium E 0 is unstable, we have the 

following proposition. 

Proposition 2.1. The tumor-free equilibrium E 0 is a saddle. 

Further, we can obtain the three positive equilibria of system 

(1.1) . They are given by E 1 (1.6096 × 10 6 , 8.1930 × 10 6 ), E 2 (7.5873 

× 10 5 , 2.6817 × 10 8 ) and E 3 (1.7343 × 10 5 , 4.4701 × 10 8 ), where E 1 
and E 3 are called as the small tumor-present equilibrium and the 

lager tumor-present equilibrium, respectively. Applying numerical 

calculations, we get the eigenvalues of the Jacobian matrix at the 

tumor-present equilibrium E i ( i = 1 , 2 , 3 ) as follows: ⎧ ⎨ 

⎩ 

λ11 = −0 . 0055 + 0 . 0634 i, 

λ12 = −0 . 0055 − 0 . 0634 i, , 

⎧ ⎨ 

⎩ 

λ21 = 0 . 0356 , 

λ22 = −0 . 1493 , 

and 

⎧ ⎨ 

⎩ 

λ31 = −0 . 0496 , 

λ32 = −0 . 1862 , . 

Hence, the following proposition is obvious. 

Proposition 2.2. The positive equilibrium E 1 is a stable focus, E 2 is 

an unstable saddle and E 3 is a stable node. 

The phase diagram is exhibited in Fig. 1 , which indicates that 

if the ratio between the numbers of immune cells and that of tu- 

mor cells is not enough big, then system (1.1) tends to a big tu- 

mor equilibrium E 3 , otherwise, system (1.1) approaches a relatively 

small tumor equilibrium E 1 . 

Lemma 2.1. � = { (x, y ) ∈ R 2 + : x + y ≤ k 
d 1 

} ( k = s + 

(r+ d 1 ) 2 
4 rb 

) is a pos- 

itively invariant set of system (1.1) . 
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