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a b s t r a c t 

The exit location distribution (ELD) in the stochastic exit problem is studied by the generalized cell map- 

ping (GCM) method. According to the global properties of the underlying noise-free system, a proper 

bounded region is chosen in state space and divided into small cells. The one-step transient probability 

matrix that governs the global transient short-time solutions of the stochastic system is computed with 

the consideration of the absorbing boundary condition in exit problem. Based on it, the probability dis- 

tribution of exit location on domain boundary can be obtained by sufficient evolution of system response 

starting from the attractor. Two typical examples are given to illustrate the application of the proposed 

GCM method. It shows that the results obtained by the GCM method agree well with either the results 

from direct numerical integration or the theoretical predictions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the study of a nonlinear dynamical system perturbed by 

small external noise, one of the significant tasks is to investi- 

gate the stochastic exit problem of the system response from a 

metastable state. Usually, the basin of attraction of the underly- 

ing deterministic system is considered as the safe domain of this 

metastable state. If the response of noisy system exits from the 

safe domain ultimately, two questions arise, i.e., when and where? 

The former is related to the statistics of the first-passage time in 

stochastic dynamics [1–5] . In recent years, the exit time problem 

and noise-enhanced stability in nonlinear systems have been stud- 

ied extensively by Spagnolo and coworkers [6–10] . 

In order to answer the second question about when, we need 

to compute an exit location distribution (ELD) [11,12] , namely, the 

probability distribution of exit point on the boundary of domain. 

It is worth noting that the exit point is the point where the ran- 

dom trajectory crosses the boundary for the first time. During the 

past decades, the ELD in stochastic exit problem has attracted con- 

siderable attentions in many fields, such as statistics physics [13] , 

ecology [14] , telecommunications [15] , and neuroscience [16] . Two 

kinds of analytical methods have been used to study the ELD. They 

are large deviation theory and asymptotic expansion approach [17] . 

The direct numerical integration offers a common approach. How- 

ever, it is inherently inefficient when the noise intensity is small. 
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The generalized cell mapping (GCM) method was firstly devel- 

oped by Hsu [18] . This new version of cell mapping allows each 

cell have multiple image cells. The relationship between a cell and 

its image cells is described by the one-step transition probabili- 

ties, which lead to a Markov chain. The GCM method is widely 

used as an effective tool for global analysis and global bifurca- 

tion [19–21] of nonlinear systems. In addition, many attentions 

have also been paid to the application of GCM method in stochas- 

tic and fuzzy systems, such as the studies of random vibration 

analysis [22] , stochastic optional control [23] , stochastic bifurca- 

tion [24] , stochastic response analysis [25,26] , fuzzy bifurcation 

[27] , and fuzzy response analysis [28] . The advantage of the GCM 

method in investigating these problems is that it gives the discrete 

(both in time axis and state space) global solution of the stochas- 

tic system by a short-time transition probability matrix. From this 

matrix, quantities of useful information can be extracted. With 

the GCM method, Sun and Hsu [4] successfully studied the first- 

passage time probability of stochastic dynamical systems, explain- 

ing in a probabilistic sense when the responses cross the boundary 

of a given domain for the first time. Han et al. [5] calculated the 

probability density of first-passage time and the mean first-passage 

time from the metastable state in a bistable system subjected to 

Poisson white noise. 

This paper aims to explore another new application of the GCM 

method in the study of ELD in the stochastic exit problem. The 

rest of this paper is organized as follows. In Section 2 , the GCM 

method in stochastic dynamical system is reviewed and a variant 

is specially designed for computing the ELD. Then, in Section 3 , 

two examples are given in detail to illustrate the application of the 
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proposed GCM method. Finally, some relevant comments are pre- 

sented in Section 4 . 

2. GCM method for ELD 

2.1. The GCM method 

Consider an N -dimensional nonlinear dynamical system sub- 

jected to Gaussian white noise excitations. The corresponding 

stochastic differential equation in the Itô sense is given by 

˙ x (t) = b (x ) + ε 1 / 2 σ (x ) W (t) , (1) 

where x ( t ) is the system response process and it is known to 

be Markovian. b ( x ) is an N -dimensional nonlinear vector function, 

σ( x ) is an N ×L diffusion matrix, ɛ represents a small real param- 

eter, and W ( t ) is the standard L -dimensional Gaussian white noise 

vector process with the following properties 

E[ W (t)] = 0 , E[ W (t) W 

T (t ′ )] = I δ(t − t ′ ) , t ′ < t, (2) 

where 0 is the L -dimensional zero vector, and I is the L ×L identity 

matrix. 

Let q ( x , t | x 0 , t 0 ) denote the transition probability density func- 

tion (PDF) of the response process x at time t conditional on x 0 
at time t 0 ( t 0 < t ). According to Eqs. (1) and ( 2 ), the Fokker–Plank 

equation [29,30] governing q ( x , t | x 0 , t 0 ) can be obtained as 

∂q (x , t | x 0 , t 0 ) 

∂t 
= − ∂ 

∂ x i 
[ b i (x ) q (x , t | x 0 , t 0 ) ] 

+ 

ε 

2 

∂ 

∂ x i ∂ x j 

[
g i j (x ) q (x , t | x 0 , t 0 ) 

]
, (3) 

in which the initial condition is q (x , t| x 0 , t 0 ) = δ(x − x 0 ) , b i are 

components of b , and g ij are elements of matrix g = σσ T . Suppose 

that p ( x , t ) denotes the response PDF of the process x ( t ) at time t . 

By the definition of the conditional probability, we have 

p(x , t) = 

∫ 
R N 

q (x , t | x 0 , t 0 ) p( x 0 , t 0 ) d 

x 0 . (4) 

When the GCM method is carried out, the continuous state 

space R N is firstly transformed into a discrete cell state space Z N . 

Consider a bounded region of interest D and divide it into Nc small 

rectangular regular cells of the same size. The regular cells are 

continuously numbered by integers ranging from 1 to Nc . More- 

over, the region outside D is regarded as a sink cell numbered by 

0. Once this cell state space is established, the system response 

is identified within cells, and the transition relationship between 

points can be replaced by the one between cells. 

Now we are only interested in the response process at a se- 

quence of discrete moment t n = n �t, n = 0 , 1 , 2 , . . . . Choose time 

t 0 = m �t and t = (m + 1)�t , and note that the transition PDF is 

homogeneous, i.e. 

q (x , t | x 0 , t 0 ) = q (x , �t | x 0 , 0) . (5) 

Then, the transition probability from cell i to j can be expressed 

as 

q ji = 

∫ 
C j 

q (x , �t | x 0 , 0 ) d 

x , (6) 

where x 0 ∈ C i , and C i ( j ) is the domain occupied by cell i ( j ). If p j ( n ) 

is the probability that the system response locates in the cell j at 

time t n 

p j (n ) = 

∫ 
C j 

p(x , t n ) d 

x . (7) 

Eq. (4) can be discretized as 

p j (n + 1) = 

Nc ∑ 

i =1 

q ji p i (n ) , n = 0 , 1 , 2 , . . . (8) 

Assume that Q = { q ji } represents the one-step transition prob- 

ability matrix and P (n ) = [ p 1 (n ) , p 2 (n ) , · · · , p Nc (n )] 
T 

is the uncon- 

ditional response probability distribution vector at time t n . Conse- 

quently, Eq. (8) can be rewritten as 

P (n + 1) = QP (n ) . (9) 

2.2. The ELD 

In the GCM method, the one-step transition probability Q pro- 

vides the global short-time approximate solutions of the stochastic 

dynamical system, and Eq. (9) governs the probability evolution of 

system. This subsection focuses on the computation of ELD in the 

stochastic exit problem of system ( 1 ). 

Firstly, the global properties of the underlying deterministic sys- 

tem 

˙ x (t) = b (x ) should be detected. It is assumed that the system 

owns an attractor point A 0 in the state space, and that B , denoting 

the domain of attraction of A 0 , is restricted by a smooth boundary 

∂B . In implementing the GCM method, a bounded region of inter- 

est D is chosen to cover the main global structure in state space, 

and a cell state space is built in D . Fig. 1 (a) presents the global 

properties in cell state space of a two-dimensional example. 

In the case of attraction domain B not confined in state space 

or too big in size (see Fig. 1 (b)), due to the exit point generally dis- 

tributes on only a part of the smooth boundary ∂B , we can select a 

proper region D to cover the concerned partial ∂B and part of the 

domain B (including the attractor point). The partial boundary of D 

that locates in domain B is viewed as artificial boundary for con- 

sidering the exit problem. The artificial boundary should be chosen 

such that the probability that the system response crosses it is sev- 

eral orders smaller than the probability that the response crosses 

the concerned partial boundary ∂B . In the following, B refers to 

the part of domain of attraction contained in D . And boundary ∂ B 

is the closed curve that consists of the partial ∂B in D and the ar- 

tificial boundary. 

According to the concerned domain of attraction B and bound- 

ary ∂ B , all the cells in cell state space can be classified into three 

categories. For a given cell c , (i) it is called a boundary cell if there 

exists a point x 0 ∈ c , and x 0 is located on boundary ∂ ̄B ; (ii) it is 

called a domain cell if x ∈ B for all x ∈ c ; (iii) otherwise, it is called 

a generalized sink cell. 

Secondly, we focus on the construction of a special one-step 

transition probability matrix Q̄ = { ̄q ji } with absorbing boundary 

condition. Let us consider a given cell with number i . If i is a 

boundary cell or a generalized sink cell, the elements are defined 

by 

q̄ ii = 1 and q̄ ki = 0 for all k � = i. (10) 

If i is a domain cell, a counting array NI with initial value 0 is 

prepared. M interior sampling points are uniformly selected within 

the cell i . Take each of the sampling points as initial value and 

generate Sa independent stochastic trajectories for a time duration 

�t (mapping time step). In this process, the fourth order Runge–

Kutta algorithm is employed as the numerical scheme for integrat- 

ing the stochastic differential equation. There are a total of M × Sa 

random trajectories generated from the considered domain cell i . 

Suppose that the end point of a random trajectory falls into cell u , 

two different situations should be taken into account. (i) If u is a 

domain cell or a boundary cell, the counter NI ( u ) is increased by 

one. (ii) If u is a generalized sink cell, this random trajectory must 

intersect with the boundary ∂ ̄B , and the intersection point is sup- 

posed to be in a boundary cell b , then NI ( b ) is increased by one. 

After checking all the M × Sa trajectories from cell i , we can ob- 

tain the transition probability from cell i to cell j 

q̄ ji = NI( j) / (M × Sa ) . (11) 
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