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a b s t r a c t 

Stabilizing an unstable equilibrium point in a fractional-order chaotic system is studied using prediction- 

based feedback method in this paper. Sufficient conditions for stabilization of equilibrium points are ex- 

plicitly given and rigorously proven. The proposed approach is effective and easy to be implemented, 

but its application is limited to systems with no external disturbances and uncertainties in the model 

description. Numerical simulations show the effectiveness of the method. 
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1. Introduction 

Fractional calculus has been introduced since 300 years ago. 

However, its applications to physics and engineering have just 

started in the recent decades. It provides an excellent instrument 

for the description of memory and hereditary properties of various 

materials and processes, and is widely applied in electromagnetic 

waves [1] , electrode-electrolyte polarization [2] , dielectric polariza- 

tion [3] , and viscoelastic systems [4] . Nowadays, it is known that 

many fractional-order dynamical systems behave chaotically or hy- 

perchaotically, such as the fractional order Chen system [5] , the 

fractional order Lorenz system [6] , the fractional-order Duffing sys- 

tem [7] , the fractional order Rössler system [8] , the fractional order 

financial system [9] , the fractional-order hyperchaotic Chen system 

[10] , the fractional-order hyperchaotic novel system [11] and so on. 

The control of chaotic systems has been one of the most in- 

teresting topics since Ott, Grebogi and Yorke [12] established an 

effective scheme to control chaos. Many methods and techniques 

have been presented to control chaotic systems, such as delayed 

feedback control method [13] , adaptive method [14–16] , impul- 

sive method [17] , backstepping design technique [18] , sliding mode 

method [19–21] , prediction-based feedback method [22] , to name 

but a few. However, most of existing control methods mainly focus 

on integer-order chaotic systems. The control of fractional-order 

chaotic systems is still considered as a challenging topic since the 

theories for analyzing the fractional-order dynamics systems are 

still very limited. 
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The prediction-based feedback control method proposed by 

Ushio and Yamamoto [22] is an efficient method because it don’t 

need any externally generated control signal. In [22] , the au- 

thors studied the predictive control of integer-order discrete-time 

chaotic systems where control input was determined by the dif- 

ference between the predicted states and the current states. Af- 

terwards, Boukabou et al. [23] proposed the predictive control 

of integer-order continuous-time chaotic systems. Senouci and 

Boukabou [24] studied the control and synchronization of the 

integer-order continuous-time chaotic systems based on Takagi–

Sugeno fuzzy model and predictive control method. Messadi et al. 

[25] investigated the predictive control of an integer-order chaotic 

permanent magnet synchronous generator in a wind turbine 

system. 

In this paper, we investigate predictive control of fractional- 

order chaotic systems. The main contribution of this paper con- 

sists of three aspects. Firstly, we extend prediction-based feedback 

control method from integer order chaotic systems to fractional- 

order chaotic systems. The control input is defined as the summa- 

tion between the predicted uncontrolled state and the difference 

of actual controlled state and an instable equilibrium point, mul- 

tiply by a negative controlling parameter. Secondly, the sufficient 

conditions suppressing fractional-order chaotic systems to unsta- 

ble equilibrium points are explicitly given and rigorously proven. 

Thirdly, numerical simulations are presented to verify the results. 

The rest of this paper is organized as follows. In Section 2 , some 

preliminaries of fractional derivative are briefly introduced. In 

Section 3 , prediction-based feedback control method of fractional- 

order chaotic system is presented. Numerical simulation results are 

provided in Section 4 , and conclusions are given in Section 5 . 
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2. Preliminaries of fractional derivative 

There are several definitions of a fractional derivative, such as 

Grünwald–Letnikov (GL) definition, Riemann–Liouville (RL) defini- 

tion and Caputo definition. In this paper we mainly use the Caputo 

fractional derivative. The Caputo fractional derivative of order θ of 

a continuous function f : R + → R is defined as follows: [26] 

D 

θ f (t) ≡ d θ f (t) 

dt θ

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

�(m − θ ) 

∫ t 

0 

f (m ) (τ ) 

(t − τ ) θ−m +1 
dτ m − 1 < θ < m, 

d m 

dt m 

f (t) θ = m, 

(1) 

where m = [ θ ] is the first integer which is not less than θ , and �( ·) 
is the Gamma function and is defined by 

�(z) = 

∫ ∞ 

0 

e −t t z−1 dt, �(z + 1) = z�(z) . (2) 

Consider a general n-dimensional nonlinear fractional-order sys- 

tem 

d θ x (t) 

dt θ
= f (x (t)) , (3) 

where 0 < θ < 1 is the fractional order, x = (x 1 , x 2 , . . . , x n ) 
T ∈ R n is 

state vector of the system, and f = ( f 1 , f 2 , . . . , f n ) 
T ∈ R n is differ- 

entiable nonlinear vector function. The equilibrium point x f ∈ R n 

of system (3) is defined by 

f (x f ) = 0 . (4) 

The Jacobian matrix of the system (3) at the equilibrium points 

is 

D f = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∂ f 1 /∂ x 1 ∂ f 1 /∂ x 2 · · · ∂ f 1 /∂ x n 

∂ f 2 /∂ x 1 ∂ f 2 /∂ x 2 · · · ∂ f 2 /∂ x n 

. . . 
. . . 

. . . 
. . . 

∂ f n /∂ x 1 ∂ f n /∂ x 2 · · · ∂ f n /∂ x n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Lemma 1 ( [27] ) . If the eigenvalues of the Jacobian matrix Df of the 

system (3) evaluated at the equilibrium point satisfy 

| arg(λ) | > θπ/ 2 , (5) 

namely all the roots of the polynomial equation 

P (λ) = 0 , P (λ) = λn + a 1 λ
n −1 + a 2 λ

n −2 + · · · + a n 

satisfy Eq. (5) , then the system (3) is locally asymptotically stable. 

3. Predictive feedback controller design 

The purpose of predictive feedback control is to stabilize a 

fractional-order chaotic system to an equilibrium point by adding 

a small signal u ( t ) to the initial system (3) . The controlled system 

will be defined as 

d θ x (t) 

dt θ
= f (x (t)) + u (t) . (6) 

The predictive feedback control law u ( t ) is determined by the sum- 

mation between the predicted uncontrolled state and the differ- 

ence of actual controlled state and an instable equilibrium point, 

multiply by a negative controlling parameter. It will be in the form 

u (t) = k 

(
d θ x (t) 

dt θ
+ x (t) − x f 

)
= k ( f (x (t)) + x (t) − x f ) , (7) 

where k is a negative controlling parameter such that k � = −1 and 

x f is an equilibrium point of system (3) . By substituting Eq. (7) into 

Eq. (6) , we obtain the following controlled system: 

d θ x (t) 

dt θ
= 

˜ f (x (t)) = (1 + k ) f (x (t)) + k (x (t) − x f ) . (8) 

It is easy to verify that the controlled system processes the follow- 

ing propositions: 

Proposition 1. The systems (3) and (8) share exactly the same equi- 

librium point x f ∈ R n . 

Proof. If ˜ f (x f ) = 0 , then (1 + k ) f (x f ) = 0 . Then f (x f ) = 0 will 

follow if k � = −1 . Conversely, it is obvious that f (x f ) = 0 im- 

plies ˜ f (x f ) = 0 . Hence f (x f ) = 0 if and only if ˜ f (x f ) = 0 and 

Proposition 1 will follow. �

Proposition 2. Let λ1 , λ2 , . . . , λn be the eigenvalues of the Jacobian 

matrix Df of the system (3) evaluated at the equilibrium point x f and ˜ λ1 , ̃
 λ2 , . . . , ̃

 λn be the eigenvalues of the Jacobian matrix D ̃

 f of the sys- 

tem (8) evaluated at the same equilibrium point x f , there exists the 

following one-to-one correspondence between their eigenvalues: 

˜ λ j = (1 + k ) λ j + k, j = 1 , 2 , . . . , n. 

Proof. It follows from Eq. (8) that 

D ̃

 f = (1 + k ) D f + kI (9) 

where I is a unit matrix. Since ̃  λ j (1 ≤ j ≤ n ) are the eigenvalues of 

the Jacobian matrix D ̃

 f of the system (8) , we have | ̃  λ j I − D ̃

 f | = 0 . 

Then 

| ( ̃  λ j − k ) I − (1 + k ) D f | = (1 + k ) n | ̃
 λ j − k 

1 + k 
I − D f | = 0 , 

which implies ( ̃  λ j − k ) / (1 + k )(1 ≤ j ≤ n ) are the eigenvalues of 

the Jacobian matrix Df of the system (3) . Hence we have ( ̃  λ j −
k ) / (1 + k ) = λ j (1 ≤ j ≤ n ) , i.e. ̃  λ j = (1 + k ) λ j + k (1 ≤ j ≤ n ) . �

From Lemma 1 and Propositions 1 and 2 , we obtain the follow- 

ing Theorem. 

Theorem 1. Let αj and β j be the real parts and imaginary parts of 

the eigenvalues λ j ( j = 1 , 2 , . . . , n ) of the Jacobian matrix Df of the 

system (3) evaluated at the equilibrium point x f ∈ R n , respectively 

k̄ = min 

1 ≤ j≤n 

{ −α j tan 

θπ
2 

+ | β j | 
(1 + α j ) tan 

θπ
2 

− | β j | 
|| arg(α j + β j i ) | ≤ θπ

2 

}
. (10) 

If k ∈ (−1 , ̄k ) , then the equilibrium point x f ∈ R n of the controlled 

system (8) is locally asymptotically stable. 

Proof. Since | arg(α j + β j i ) | ≤ θπ
2 and 0 < θ < 1, we have αj > 

0 and arctan 

| β j | 
α j 

≤ θπ
2 . Hence 

−α j tan θπ
2 

+ | β j | 
(1+ α j ) tan θπ

2 
−| β j | 

≤ 0 , which implies 

k̄ ≤ 0 . According to the Proposition 2 , the real part and imaginary 

part of eigenvalue ̃  λ j of the Jacobian matrix D ̃

 f of the controlled 

system (8) are (1 + k ) α j + k and (1 + k ) β j , respectively. It follows 

from Lemma 1 that the locally asymptotically stable condition for 

the system (8) is 

| arg((1 + k ) α j + k + (1 + k ) β j i ) | > 

θπ

2 

. (11) 

The proof proceeds in the following cases. 

Case 1: Suppose that αj ≤ 0, then k ∈ (−1 , ̄k ) allows us to infer 

the stable condition (11) . 

Case 2: Suppose that αj > 0 , then it is obvious that (1 + k ) α j + 

k ≤ 0 implies the stable condition (11) for k ∈ (−1 , ̄k ) . 
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