Contents lists available at ScienceDirect

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Continuum-wise expansiveness for non-conservative or conservative systems

Manseob Lee*

Department of Mathematics, Mokwon University, Daejeon, 302-729, Korea

ARTICLE INFO

ABSTRACT

Article history: Received 21 October 2015 Revised 12 April 2016 Accepted 28 April 2016 Available online 7 May 2016

- 2010 MSC: 37C10 37D20 37D40
- Keywords: Expansive Continuum-wise expansive Quasi-Anosov Quasi-transverality condition Anosov

1. Introduction

Let *M* be a closed smooth $n(n \ge 2)$ -dimensional Riemannian manifold, and let Diff(*M*) be the space of diffeomorphisms of *M* endowed with the C^1 -topology. A main research topic on differentiable dynamical systems is the hyperbolic structure such as Axiom A, Anosov, structural stability, etc. We say that *f* is *expansive* if there is e > 0 such that for any pair of distinct points $x, y \in M$ there is $n \in \mathbb{Z}$ such that $d(f^n(x), f^n(y)) > e$. Expansiveness is a useful concept to study the hyperbolic structure.

In fact, Mañé [21] proved that if a diffeomorphism belongs to the C^1 interior of the set of all expansive diffeomorphisms then it is quasi-Anosov. Here a diffeomorphism f is quasi-Anosov if for all $v \in TM \setminus \{0\}$, the set $\{\|Df^n(v)\| : n \in \mathbb{Z}\}$ is unbounded. The expansiveness was introduced by Utz [31]. After, many researchers introduce the definitions of various expansiveness (N-expansive [22], entropy expansive [9], measure expansive [23], continuum-wise expansive [15], etc).

Also, the definitions are closely related to the hyperbolic dynamics ([19,29,30]). Usually, the results of discrete dynamical system (diffeomorphism) can be extended to the case of continuous dynamical system (vector field, or flow). However, the results of

* Tel.: +8201088253927.

E-mail address: lmsds@mokwon.ac.kr

http://dx.doi.org/10.1016/j.chaos.2016.04.019 0960-0779/© 2016 Elsevier Ltd. All rights reserved. In this paper, we show that a non-conservative vector field is robustly continuum-wise expansive if and only if it satisfies both Axiom A and the quasi-transversality condition. Moreover, a conservative vector field (divergence-free vector field, Hamiltonian system) is robustly continuum-wise expansive if and only if it is Anosov.

© 2016 Elsevier Ltd. All rights reserved.

vector fields cannot be obtained directly from that of diffeormorphisms in general. A diffeomorphism $f: M \to M$ is called a *star diffeomorphisms* if f has a C^1 neighborhood $\mathcal{U}(f)$ such that every periodic point of every $g \in U(f)$ is hyperbolic. Aoki [2] and Hayashi [14] proved that if a diffeomorphism f is a star diffeomorphism then *f* satisfies Axiom A without cycles. A vector field X is called a *star vector field* (or a flow X^t is called a *star flow*) if a vector field Xhas a C^1 neighborhood $\mathcal{U}(X)$ such that every singularity and every periodic orbit of every $Y \in U(X)$ is hyperbolic. Then we can find that if a flow X^t is a star flow then it satisfies Axiom A but it does not satisfy the no-cycle condition [20]. The flows version of expansiveness was introduced and studied by [10] (the definition is in the next section). Moriyasu et al. [25] studied that the version for flows of the result of Mañé [21]. Which is a motivation of the paper. We study the continuum-wise expansive flow (the definition is in the next section) which is a generalization of the results of [4.25].

2. Non-conservative vector fields

Let *M* be a closed $n(n \ge 3)$ -dimensional C^{∞} Riemannian manifold, and let *d* be the distance on *M* induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle *TM*. Denote by $\mathfrak{X}(M)$ the set of all C^1 -vector fields on *M* endowed with the C^1 -topology. Let $X \in$ $\mathfrak{X}(M)$. Then *X* generates a C^1 flow $(X^t)_{t \in \mathbb{R}}$ on *M*. Let $X^t : \mathbb{R} \times M \rightarrow$ *M* be a flow. Then X^t satisfies the followings: (i) $X^0(x) = x$, for all $x \in M$, and (ii) $X^s(X^t(x)) = X^{s+t}(x)$ for all $x \in M$ and all $s, t \in \mathbb{R}$. For $x \in M$, the $Orb(x) = \{X^t(x) : t \in \mathbb{R}\}$ is called the orbit of X through x. A point x is *non-wandering* if for every $\tau > 0$ and every neighborhood U of x there is $t > \tau$ such that $X^t(U) \cap U \neq \emptyset$. Denote by $\Omega(X)$ the set of all non-wandering points of X.

Given a vector field *X* we denote by Sing(X) the set of *singularities* of *X*, i.e. those points $x \in M$ satisfies $X(x) = \vec{0}$. Let $R := M \setminus Sing(X)$ be the set of *regular* points. We say that X^t is *expansive* if for any $\epsilon > 0$, there is a $\delta > 0$ such that for any $x, y \in M$ there is an increasing homeomorphism $h : \mathbb{R} \to \mathbb{R}$ with h(0) = 0 such that if $d(X^t(x), X^{h(t)}(y)) < \delta$ for $t \in \mathbb{R}$ then $y \in X^{(-\epsilon,\epsilon)}(x)$. By Oka [27, Lemma 2], if a flow X^t is expansive then $Sing(X) = \emptyset$.

Let Λ be a closed X^t -invariant set. The set Λ is called *hyperbolic* for X^t if there are constants C > 0, $\lambda > 0$ and a splitting $T_x M = E_x^s \oplus \langle X(x) \rangle \oplus E_x^u$ such that the tangent flow DX^t : $TM \to TM$ leaves the invariant continuous splitting and

$$||DX^{t}|_{E_{v}^{s}}|| \leq Ce^{-\lambda t}$$
 and $||DX^{-t}|_{E_{v}^{u}}|| \leq Ce^{-\lambda t}$

for t > 0 and $x \in \Lambda$. We say that $X \in \mathfrak{X}(M)$ is *Anosov* if *M* is hyperbolic for *X*.

We say that X satisfies Axiom A if the non-wandering set $\Omega(X)$ is hyperbolic and $P(X) \cup Sing(X)$ are dense in $\Omega(X)$, where P(X) is the set of periodic points of X.

Denote by $\mathcal{G}^*(M)$ the set of all-star vector fields. In [13] Gan and Wen proved that if a non-singular vector field $X \in \mathcal{G}^*(M)$ then it satisfies both the periodic orbits are dense in $\Omega(X)$ and $\Omega(X)$ is hyperbolic. For any hyperbolic point $x \in M$, we define the sets $W^s(x) = \{y \in M : d(X^t(x), X^t(y)) \to 0 \text{ as } t \to \infty\}$ and $W^u(x) = \{y \in$ $M : d(X^t(x), X^t(y)) \to 0 \text{ as } t \to -\infty\}$, where $W^s(x)$ is called the *stable manifold* of the point x and $W^u(x)$ is called the *unstable manifold* of the point x. Let $X \in \mathfrak{X}(M)$ satisfy Axiom A. We say that X satisfies the *quasi-transversality condition* if $T_x W^s(x) \cap T_x W^u(x) = \{O_x\}$ for all $x \in M$.

Continuum-wise expansiveness was introduced by Kato [15]. Recently, Arbieto, Cordeiro and Pacifico [3] was introduced the corresponding concept for flow. Let $Hom(\mathbb{R}, 0)$ be the set of homeomorphisms on \mathbb{R} fixing the origin and if A is a subset of M, $C^0(A, \mathbb{R})$ denotes the set of real continuous maps defined on A. Define $\mathcal{H}(A) = \{\alpha : A \to Hom(\mathbb{R}, 0) :$ there is $x_\alpha \in A$ with $\alpha(x_\alpha) = id$ and $\alpha(.)(t) \in C^0(A, \mathbb{R})$ for all $t \in \mathbb{R}\}$, and if $t \in \mathbb{R}$ and $\alpha \in \mathcal{H}(A)$, $\chi^t_{\alpha}(A) = \{X^{\alpha(x)(t)}(x) : x \in A\}$.

Definition 2.1 ([3, Definition 1.1]). Let $X \in \mathfrak{X}(M)$. We say that a flow X^t is continuum-wise expansive if for any $\epsilon > 0$ there is a $\delta > 0$ such that if $A \subset M$ is a continuum and $h \in \mathcal{H}(A)$ satisfies

diam($\mathcal{X}_h^t(A)$) < δ , for all $t \in \mathbb{R}$

then $A \subset X^{(-\epsilon,\epsilon)}$.

Definition 2.2. Let $X \in \mathfrak{X}(M)$. We say that a flow X^t is robustly continuum-wise expansive if there is a C^1 neighborhood $\mathcal{U}(X)$ such that for any $Y \in \mathcal{U}(X)$, Y^t is continuum-wise expansive.

Moriyasu et al. [25] proved that if a vector field X belongs to the C^1 interior of the set of all expansive vector fields then it satisfies both Axiom A and quasi-transversality condition. From this fact, we consider a general result as follows.

Theorem A. Let $X \in \mathfrak{X}(M)$. A flow X^t is robustly continuum-wise expansive if and only if X^t satisfies both Axiom A and the quasi-transversality condition.

3. Conservative systems-divergence free vector fields

Let *M* be Riemannian closed and connected manifold $n(n \ge 3)$ dimensional and let $d(\cdot, \cdot)$ denote the distance on *M* inherited by the Riemannian structure. We endow M with a volume-form [26] and let μ denote the Lebesgue measure related to it. Given a C^r $(r \ge 1)$ vector field X: $M \to TM$ the solution of the equation x' = X(x) generates a C^r flow, X^t ; by the other side given a C^r flow we can define a C^{r-1} vector field by considering $X(x) = \frac{dX^t(x)}{dt}|_{t=0}$. We say that X is divergence-free if its divergence is equal to zero, that is, $\nabla \cdot X = 0$ or equivalently if the measure μ is invariant for the associated flow. Let $\mathfrak{X}_{\mu}(M)$ denote the space of C^{r} divergencefree vector fields and we consider the usual C^1 Whitney topology on this space. Lee [19] proved that if a C^1 volume preserving diffeomorphism *f* is robustly continuum-wise expansive then it is Anosov. For divergence-free vector fields, Ferreira [12] proved that if a divergence-free vector field X belongs to the C^1 interior of the set of all expansive divergence free vector fields then it is Anosov. Bessa *et al.* [5] proved that for C^1 generic sense if a divergence free vector field X is expansive then it is Anosov. From the results, we consider the following theorem which is a general result for expansiveness of divergence free vector fields.

Theorem B. Let $X \in \mathfrak{X}_{\mu}(M)$. If a flow X^t is robustly continuum-wise expansive then it is Anosov.

4. Conservative systems-Hamiltonian systems

Let (M, ω) be a symplectic manifold, where M is a $2n(\geq 2)$ dimensional, compact, boundaryless, connected and smooth Riemannian manifold, endowed with a symplectic form ω . A *Hamiltonian* $H : M \to \mathbb{R}$ is a real valued $C^r(r \geq 2)$ function on M. Denote by $C^r(M, \mathbb{R})$ the set of C^r -Hamiltonians on M. In this paper, we will be restricted to the C^2 -topology, thus we set r = 2. Given a Hamiltonian H, we define the *Hamiltonian vector field* X_H as following: for all $v \in T_pM$

$$\omega(X_H(p), \nu) = d_p H(\nu)$$

which generates the Hamiltonian flow X_H^t . A Hamiltonian vector field X_H is C^1 if and only if the Hamiltonian function H is C^2 . A scalar $e \in H(M) \subset \mathbb{R}$ is called an *energy* of *H*. An *energy hyper*surface $\mathcal{E}_{H,e}$ is a connected component of $H^{-1}(\{e\})$ called an *en*ergy level set. The energy level set $H^{-1}(\{e\})$ is said to be regu*lar* if any energy hypersurface of $H^{-1}(\{e\})$ is regular which means it does not contain singularities. Clearly a regular energy hypersurface is a X_{H}^{t} -invariant, compact and (2n - 1)-dimensional manifold. We say that a Hamiltonian level (H, e) is regular if the energy level set $H^{-1}(\{e\})$ is regular. A Hamiltonian system is $(H, e, \mathcal{E}_{H,e})$, where *H* is a Hamiltonian, *e* is an energy and $\mathcal{E}_{H,e}$ is a regular connected component of $H^{-1}(\{e\})$. Then $H^{-1}(\{e\})$ corresponds to the union of a finite number of closed connected components, that is, $H^{-1}(\{e\}) = \bigcup_{i=1}^{n} \mathcal{E}_{H,e,i}$, for $n \in \mathbb{N}$. Note that it is well known that Hamiltonian flows are symplectic and volume preserving by the Liouville Theorem. Thus the 2*n*-form $\omega^n = \omega \land \ldots \land \omega(n\text{-times})$ is a volume form and induces a measure μ on *M* which is called the Lebesgue measure associated to ω^n . Then the measure μ on *M* is invariant by the Hamiltonian flow. For symplectic diffeomorphisms, Lee [17] showed that if a symplectic diffeomorphism f is robustly continuum-wise expansive then it is Anosov. Moreover, the author [18] proved that for C^1 generically, if a symplectic diffeomorphism f is continuum-wise expansive then it is Anosov. Bessa et al. [8] proved that a Hamiltonian system (H, \mathcal{E}, e) is robustly expansive then it is Anosov. Lee [16] proved that for C^2 generically, if a Hamiltonian system (H, \mathcal{E}, e) is expansive then it is Anosov. From the results, we consider the following.

Theorem C. Let $H \in C^2(M, \mathbb{R})$. If a Hamiltonian system (H, \mathcal{E}, e) is robustly continuum-wise expansive then it is Anosov.

Download English Version:

https://daneshyari.com/en/article/1888770

Download Persian Version:

https://daneshyari.com/article/1888770

Daneshyari.com