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a b s t r a c t

In this paper we introduce and analyze the Poisson Aggregation Process (PAP): a stochastic

model in which a random collection of random balls is stacked over a general metric space.

The scattering of the balls’ centers follows a general Poisson process over the metric space,

and the balls’ radii are independent and identically distributed random variables governed by

a general distribution. For each point of the metric space, the PAP counts the number of balls

that are stacked over it. The PAP model is a highly versatile spatial counterpart of the tem-

poral M/G/∞ model in queueing theory. The surface of the moon, scarred by circular meteor-

impact craters, exemplifies the PAP model in two dimensions: the PAP counts the number of

meteor-impacts that any given moon-surface point sustained. A comprehensive analysis of the

PAP is presented, and the closed-form results established include: general statistics, station-

ary statistics, short-range and long-range dependencies, a Central Limit Theorem, an Extreme

Limit Theorem, and fractality.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In queueing theory – the branch of mathematics that

studies the statistical behavior of queues – “M/G/∞” is the

common acronym for a fundamental model of systems char-

acterized by a Markovian arrival process of customers (rep-

resented by the letter “M”), a general service time of the

incoming customers (represented by the letter “G”), and an

infinite battery of servers poised to attend the incoming

customers (represented by the symbol “∞”) [1–5]. From a

physical perspective the M/G/∞ model can be described as

follows: particles enter a system of interest according to a

Poisson stream of arrivals; each particle, independently of ev-

erything else, stays in the system for a random duration of

time; the particles’ sojourn times in the system share a com-

mon statistical distribution. Evidently, the number of parti-

cles in the system fluctuates randomly, and the stochastic

process tracking this number is termed the M/G/∞ process.
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The origins of the M/G/∞ model stem from particle physics

– where this model arose in the context of Geiger–Muller

counters; the application of the M/G/∞ model in the con-

text of queueing theory came only after its ‘physics debut’

[6–12]. Interestingly, the M/G/∞ model and its variants were

recently applied in the biophysics of gene expression [13];

more generally, we note that in the recent years queue-

ing models are attracting quite an interest in physics, e.g.,

[14–18].

The goal of this paper is to introduce and analyze a general

spatial counterpart of the temporal M/G/∞ process: the Pois-

son Aggregation Process (PAP). Pictorially, the M/G/∞ process

can be constructed by stacking a random collection of ran-

dom intervals over the timeline – each interval representing

the sojourn time of a particle arriving to the system. With

this picture in mind, the conceptual transition from a tem-

poral setting to a general spatial setting is rather straightfor-

ward: stack a random collection of random sets over a space

of interest. To make this transition precise, three model-

foundations must be specified: the underlying space, the ran-

dom scattering of the sets, and the geometry and statistics
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of the sets. In the PAP model these foundations are as

follows:

Space. The underlying space is taken to be a general metric

space [19–21]. Metric spaces accommodate a wide variety of

settings including Euclidean spaces and Euclidean domains

of arbitrary dimension, non-Euclidean spaces such as elliptic

or hyperbolic spaces, general surfaces and landscapes, gen-

eral fractal objects, general networks, and more.

Scattering. The scattering of the sets is considered to be ac-

cording to a general Poisson process over the underlying met-

ric space [4,22–24]. Poisson processes are a potent statistical

methodology for the random scattering of points over gen-

eral spaces, with a broad span of applications ranging from

the abovementioned queueing theory [25] to insurance and

finance [26], and from fractal objects [27] to power-laws [28].

Sets. The sets are taken to be the simplest generalization

of one-dimensional intervals – balls in the metric space. The

ball centers are the points of the aforementioned Poisson

process, and analogously to the M/G/∞ model: each ball, in-

dependently of everything else, has a random radius, and the

balls’ radii share a common statistical distribution.

A vivid and tangible two-dimensional example of the PAP

model is the surface of our moon – scarred with numerous

circular craters caused by meteor impacts. In this example

the metric space is the moon surface, the randomly scattered

points are meteor-impact epicenters, and the balls are the cir-

cular impact craters. The distribution of the craters radii is

induced by the distribution of the meteor sizes.

On the one hand, the underlying metric space and the

Poisson-process scattering allow for great model-versatility;

on the other hand, this choice of model-foundations turns

out to be amenable to mathematical analysis, and yields

closed-form analytic results. Thus, these model-foundations

attain a fine balance between generality and tractability. The

exposition and the analysis of the PAP model are as follows:

The paper begins with a detailed description and con-

struction of the PAP model (Section 2), followed by a gen-

eral statistical analysis (Section 3), and by a general station-

arity analysis (Section 4) – which, in turn, is followed by

a discussion (Section 5). Then, two stochastic limit laws of

the PAP model are established – a Central Limit Theorem

yielding a universal Gaussian approximation (Section 6), and

an Extreme Limit Theorem yielding a universal ‘extreme-

value’ limit with fractal features (Section 7). The paper ends

with an illustrative example demonstrating the application

of the general PAP results (Section 8), and with a conclusion

(Section 9). The derivations of the various PAP results are de-

tailed in the Methods section (Section 10).

Short glossary of notation that shall be used along the

paper

Indicator functions: I{A} is the indicator function of an

event A; namely, I{A} = 1 if the event A occurred, and

I{A} = 0 if the event A did not occur.

Poisson distribution: πn(μ) = exp (−μ)μn/n! is the prob-

ability that a Poisson-distributed random variable,

with mean μ (μ > 0), yields the outcome n (n =
0, 1, 2, . . .).

Expectation: E[ · ] is the operation of mathematical expec-

tation; namely, E[ξ ] is the mean of the real-valued ran-

dom variable ξ .

Asymptotic equivalence: ≈ denotes asymptotic equiva-

lence of functions; specifically, if f1(t) and f2(t) are

functions defined on the non-negative half-line (t ≥ 0),

then f1(t) ≈ f2(t) means that limt→∞ [ f1(t)/ f2(t)] = ω,

where ω is a positive limit.

2. The PAP model

In a nutshell, the Poisson Aggregation Process (PAP) stacks

a random collection of random balls over a given metric

space S . As noted in the Introduction, the metric space can

be an Euclidean space or an Euclidean domain of arbitrary

dimension, a non-Euclidean space such as an elliptic space

or a hyperbolic space, a surface or a landscape, a fractal ob-

ject, a general network, etc. The precise definition of the PAP

is described as follows:

The geometry of the underlying metric space S is charac-

terized by its distance function d(x, y), which represents the

distance between the points x, y ∈ S [19–21]. The stacking is

by a countable collection of balls labeled by the index i – with

the point Pi ∈ S representing the center of ball i, and with the

positive number Ri representing the radius of ball i. Specifi-

cally, ball i encompasses all the points of S that are within a

distance Ri from its center point Pi, and is thus given by the

set {x ∈ S|d(x, Pi) < Ri}. As noted above the balls are random,

and their statistics are considered to be as follows:

• The collection of the ball-centers P = {Pi} forms a general

Poisson process over the space S .

• The ball-radii {Ri} are independent and identically dis-

tributedcopies of a general positive-valued random vari-

able R – henceforth termed the ‘generic radius’.

• The collection of the ball-radii {Ri} is independent of the

collection of the ball-centers P = {Pi}.

Poisson processes are a highly versatile and widely appli-

cable statistical methodology to model the random scatter-

ing of points over general spaces and domains [4,22–24]. The

distribution of the Poisson process P is governed by its in-

tensity – a measure λ(ds) over the space S – according to the

two following rules: (i) the number of ball-centers residing in

the measurable subset S ⊂ S is a Poisson-distributed random

variable with mean λ(S) = ∫
S λ(ds); (ii) the numbers of ball-

centers residing in disjoint subsets of S are independent ran-

dom variables. Also, we denote by �(r) = Pr (R ≤ r) (r ≥ 0)

the cumulative distribution function of the generic radius R,

and by �̄(r) = 1 − �(r) = Pr (R > r) (r ≥ 0) the correspond-

ing tail function.

The PAP is defined as a collection of integer-valued ran-

dom variables indexed by the points of the metric space:

{N(x); x ∈ S}, with

N(x) =
∑

i

I{d(x, Pi) < Ri} . (1)

Namely, the random variable N(x) counts the number of balls

that are stacked over the point x, and it attains the integer

values {0, 1, 2, . . .}. For example, one may envision a shower

of meteors impacting a given surface S, say the surface of our

moon. The meteors are labeled by the index i, the point Pi is

the impact-epicenter of meteor i, and Ri is the impact-range

of meteor i . In this example the random variable N(x) counts

the number of meteor impacts that the point x sustained.
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