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In this paper we introduce and analyze the Poisson Aggregation Process (PAP): a stochastic
model in which a random collection of random balls is stacked over a general metric space.
The scattering of the balls’ centers follows a general Poisson process over the metric space,
and the balls’ radii are independent and identically distributed random variables governed by
a general distribution. For each point of the metric space, the PAP counts the number of balls
that are stacked over it. The PAP model is a highly versatile spatial counterpart of the tem-
poral M/G/oo model in queueing theory. The surface of the moon, scarred by circular meteor-
impact craters, exemplifies the PAP model in two dimensions: the PAP counts the number of
meteor-impacts that any given moon-surface point sustained. A comprehensive analysis of the
PAP is presented, and the closed-form results established include: general statistics, station-
ary statistics, short-range and long-range dependencies, a Central Limit Theorem, an Extreme
Limit Theorem, and fractality.

Extreme limit theorem
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1. Introduction

In queueing theory — the branch of mathematics that
studies the statistical behavior of queues - “M/G/oc” is the
common acronym for a fundamental model of systems char-
acterized by a Markovian arrival process of customers (rep-
resented by the letter “M”), a general service time of the
incoming customers (represented by the letter “G”), and an
infinite battery of servers poised to attend the incoming
customers (represented by the symbol “c0”) [1-5]. From a
physical perspective the M/G/oo model can be described as
follows: particles enter a system of interest according to a
Poisson stream of arrivals; each particle, independently of ev-
erything else, stays in the system for a random duration of
time; the particles’ sojourn times in the system share a com-
mon statistical distribution. Evidently, the number of parti-
cles in the system fluctuates randomly, and the stochastic
process tracking this number is termed the M/G/oo process.
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The origins of the M/G/oo model stem from particle physics
- where this model arose in the context of Geiger—-Muller
counters; the application of the M/G/oo model in the con-
text of queueing theory came only after its ‘physics debut’
[6-12]. Interestingly, the M/G/oc model and its variants were
recently applied in the biophysics of gene expression [13];
more generally, we note that in the recent years queue-
ing models are attracting quite an interest in physics, e.g.,
[14-18].

The goal of this paper is to introduce and analyze a general
spatial counterpart of the temporal M/G/oo process: the Pois-
son Aggregation Process (PAP). Pictorially, the M/G/oco process
can be constructed by stacking a random collection of ran-
dom intervals over the timeline - each interval representing
the sojourn time of a particle arriving to the system. With
this picture in mind, the conceptual transition from a tem-
poral setting to a general spatial setting is rather straightfor-
ward: stack a random collection of random sets over a space
of interest. To make this transition precise, three model-
foundations must be specified: the underlying space, the ran-
dom scattering of the sets, and the geometry and statistics


http://dx.doi.org/10.1016/j.chaos.2015.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2015.11.019&domain=pdf
mailto:eliazar@post.tau.ac.il
mailto:iddo.eliazar@intel.com
http://dx.doi.org/10.1016/j.chaos.2015.11.019

1. Eliazar / Chaos, Solitons and Fractals 83 (2016) 38-53 39

of the sets. In the PAP model these foundations are as
follows:

Space. The underlying space is taken to be a general metric
space [19-21]. Metric spaces accommodate a wide variety of
settings including Euclidean spaces and Euclidean domains
of arbitrary dimension, non-Euclidean spaces such as elliptic
or hyperbolic spaces, general surfaces and landscapes, gen-
eral fractal objects, general networks, and more.

Scattering. The scattering of the sets is considered to be ac-
cording to a general Poisson process over the underlying met-
ric space [4,22-24]. Poisson processes are a potent statistical
methodology for the random scattering of points over gen-
eral spaces, with a broad span of applications ranging from
the abovementioned queueing theory [25] to insurance and
finance [26], and from fractal objects [27] to power-laws [28].

Sets. The sets are taken to be the simplest generalization
of one-dimensional intervals - balls in the metric space. The
ball centers are the points of the aforementioned Poisson
process, and analogously to the M/G/oo model: each ball, in-
dependently of everything else, has a random radius, and the
balls’ radii share a common statistical distribution.

Avivid and tangible two-dimensional example of the PAP
model is the surface of our moon - scarred with numerous
circular craters caused by meteor impacts. In this example
the metric space is the moon surface, the randomly scattered
points are meteor-impact epicenters, and the balls are the cir-
cular impact craters. The distribution of the craters radii is
induced by the distribution of the meteor sizes.

On the one hand, the underlying metric space and the
Poisson-process scattering allow for great model-versatility;
on the other hand, this choice of model-foundations turns
out to be amenable to mathematical analysis, and yields
closed-form analytic results. Thus, these model-foundations
attain a fine balance between generality and tractability. The
exposition and the analysis of the PAP model are as follows:

The paper begins with a detailed description and con-
struction of the PAP model (Section 2), followed by a gen-
eral statistical analysis (Section 3), and by a general station-
arity analysis (Section 4) - which, in turn, is followed by
a discussion (Section 5). Then, two stochastic limit laws of
the PAP model are established - a Central Limit Theorem
yielding a universal Gaussian approximation (Section 6), and
an Extreme Limit Theorem yielding a universal ‘extreme-
value’ limit with fractal features (Section 7). The paper ends
with an illustrative example demonstrating the application
of the general PAP results (Section 8), and with a conclusion
(Section 9). The derivations of the various PAP results are de-
tailed in the Methods section (Section 10).

Short glossary of notation that shall be used along the

paper

Indicator functions: I{A} is the indicator function of an
event A; namely, I{A} = 1 if the event A occurred, and
I{A} = 0 if the event A did not occur.

Poisson distribution: 7, (1) = exp (—u)u/n! is the prob-
ability that a Poisson-distributed random variable,
with mean @ (4 > 0), yields the outcome n (n=
0,1,2,...).

Expectation: E[ - ] is the operation of mathematical expec-
tation; namely, E[£ ] is the mean of the real-valued ran-
dom variable &.

Asymptotic equivalence: ~ denotes asymptotic equiva-
lence of functions; specifically, if fi(t) and f,(t) are
functions defined on the non-negative half-line (t > 0),
then f1(t) ~ f,(t) means thatlim; . [ f1 (t)/fo ()] = w,
where w is a positive limit.

2. The PAP model

In a nutshell, the Poisson Aggregation Process (PAP) stacks
a random collection of random balls over a given metric
space S. As noted in the Introduction, the metric space can
be an Euclidean space or an Euclidean domain of arbitrary
dimension, a non-Euclidean space such as an elliptic space
or a hyperbolic space, a surface or a landscape, a fractal ob-
ject, a general network, etc. The precise definition of the PAP
is described as follows:

The geometry of the underlying metric space S is charac-
terized by its distance function d(x, y), which represents the
distance between the points x,y € S [19-21]. The stacking is
by a countable collection of balls labeled by the index i - with
the point P, € S representing the center of ball i, and with the
positive number R; representing the radius of ball i. Specifi-
cally, ball i encompasses all the points of S that are within a
distance R; from its center point P;, and is thus given by the
set {x € S|d(x, P.) < R;}. As noted above the balls are random,
and their statistics are considered to be as follows:

« The collection of the ball-centers P = {F;} forms a general
Poisson process over the space S.

 The ball-radii {R;} are independent and identically dis-
tributedcopies of a general positive-valued random vari-
able R - henceforth termed the ‘generic radius’.

« The collection of the ball-radii {R;} is independent of the
collection of the ball-centers P = {P,}.

Poisson processes are a highly versatile and widely appli-
cable statistical methodology to model the random scatter-
ing of points over general spaces and domains [4,22-24]. The
distribution of the Poisson process P is governed by its in-
tensity — a measure A(ds) over the space S - according to the
two following rules: (i) the number of ball-centers residing in
the measurable subset S c S is a Poisson-distributed random
variable with mean A(S) = f; A(ds); (ii) the numbers of ball-
centers residing in disjoint subsets of S are independent ran-
dom variables. Also, we denote by ®(r) =Pr(R<r) (r > 0)
the cumulative distribution function of the generic radius R,
and by ®(r) =1 — &(r) = Pr (R > r) (r > 0) the correspond-
ing tail function.

The PAP is defined as a collection of integer-valued ran-
dom variables indexed by the points of the metric space:
{N(x); x € S}, with

N(X)=Zl{d(XaPi) <Ri}. (1

Namely, the random variable N(x) counts the number of balls
that are stacked over the point x, and it attains the integer
values {0, 1, 2, ...}. For example, one may envision a shower
of meteors impacting a given surface S, say the surface of our
moon. The meteors are labeled by the index i, the point P; is
the impact-epicenter of meteor i, and R; is the impact-range
of meteor i. In this example the random variable N(x) counts
the number of meteor impacts that the point x sustained.
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