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a b s t r a c t

Toy model dynamical systems, such as the baker maps, are useful to shed light on some of

the conditions verified by deterministic models in non-equilibrium statistical physics. We in-

vestigate a 2D dynamical system, enjoying a weak form of reversibility, with peculiar basins

of attraction and steady states. In particular, we test the conditions required for the validity

of the transient Fluctuation Relation. Our analysis illustrates by means of concrete examples

why ergodicity of the equilibrium dynamics (also known as “ergodic consistency”) seems to

be a necessary condition for the transient Fluctuation Relation. This investigation then leads

to the numerical verification of a kind of transient relation which, differently from the usual

transient Fluctuation Relation, holds only asymptotically. At the same time, this relation is not

a steady state Fluctuation Relation, because the steady state is a fixed point without fluctua-

tions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of Fluctuation Relations (FR) originated with

the seminal work of Evans et al. [1], and motivated many

works, beginning with [2] for the transient FR and [3] for the

steady state FR. These relations became increasingly popu-

lar in statistical mechanics, as they describe statistical prop-

erties of systems far from equilibrium [4–7]. Therefore it is

important to clarify the assumptions under which such re-

lations hold. The vast majority of works on the derivation of

the steady state FR for the phase space contraction rate � is

based on the assumption that the invariant probability mea-

sure is smooth along the unstable direction, and that the dy-

namics is time reversal invariant [8,9]. The purpose of time

reversibility in those works is to associate each trajectory
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segment of given length n and phase space contraction �n

with a counterpart yielding opposite phase space contraction

−�n, so that the ratio of the probabilities of positive and neg-

ative phase space contractions can be compared. However,

while the condition of time reversal invariance is sufficient

for every trajectory segment to have such a counterpart, this

condition is not always verified by models of physical inter-

est and, like other ingredients of the original proofs, it is not

necessary for the FR to hold, see e.g. Refs. [10,11]. In general,

the identification of the minimal requirements for the steady

state and for the transient FR to hold remains an open ques-

tion, although it is important in order to delimit the range of

applicability of such relations. Consequently, numerous pa-

pers have been devoted to that, consider e.g. Refs. [12,13] for

stochastic systems, Ref. [14] for billiards, Refs. [10,11] for sim-

ple maps, and Ref. [8] for granular fluids. Similar investiga-

tions on the applicability of mathematical relations of physi-

cal interest are common, because derivations usually involve

mathematically sufficient ingredients which may not be

necessary, or which may be physically unlikely, thus hiding
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Fig. 1. Map L defined as the composition of the maps described by the Eqs. (1) and (5).

Fig. 2. Left panel: the attractors of the map L. Right panel: the corresponding basins of attraction (shown is the case with � = 0.19). Points in the area coloured in

turquoise will converge in the steady state to the attractor PD, while the points lying in the purple regions will collapse to the two orthogonal lines referred to,

in the left panel, as C and D. Those orbits are only possible if the parameter � satisfies 1
8

≤ � ≤ 1
4

. Finally the green and blue regions are invariant regions which

remain unchanged under the dynamics, and coincide with the regions Binv and Cinv portrayed on the left panel. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

the physical mechanisms at work; cf. Refs. [15,16] for the er-

godic hypothesis, Refs. [17,18] for diffusion 1, and Refs. [22–

26] for linear response. Also, the predictive value of a theory

is reduced, if the relevant range of applicability is not identi-

fied.

Toy models have proved to be an invaluable source

of insight in this respect and, in particular, simple one-

dimensional and two-dimensional dynamical systems have

been used in non-equilibrium statistical physics, because

amenable to thorough analysis [27,28]. Obviously, their dy-

namics cannot be taken to realistically represent the com-

plexity of many interacting particles, but they efficiently

serve as benchmarks for various assumptions; e.g. one coun-

1 It is worth noticing that stochastic processes for nonequilibrium ex-

tended systems enjoying hydrodynamic limits and diffusion also obey the

steady state FR. This is due to their Markovian microscopic structure, see e.g.

Refs. [19–21].

terexample suffices to show that a given theory needs to

more precisely outlined. For instance, Colangeli et al. [10]

prove the validity of the steady state FR for the phase

space contraction rate of a hyperbolic dynamical system

whose invariant measure is discontinuous along the unsta-

ble direction. Colangeli and Rondoni [11] obtain the valid-

ity of the steady state FR for a dynamical system which is

not time reversal invariant but it satisfies a weaker sym-

metry, analogous to that used for stochastic FR, which al-

lows paths with opposite phase space contraction to be

paired.

In the present paper we take one step further, considering

the transient FR for a map L of the unit square U = [0, 1] ×
[0, 1], depending on one parameter � which can be tuned

to produce either non-dissipative (hereafter called “equilib-

rium”) dynamics, or dissipative dynamics (in which case we

speak of “non-equilibrium” dynamics). In this framework,

non-dissipative means that volumes of U are preserved in

time, analogously to Hamiltonian dynamics, while dissipa-
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