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a b s t r a c t

In this article we study the dynamical behaviour of a intracellular delayed viral infection
with immune impairment model and general non-linear incidence rate. Several
techniques, including a non-linear stability analysis by means of the Lyapunov theory
and sensitivity analysis, have been used to reveal features of the model dynamics. The
classical threshold for the basic reproductive number is obtained: if the basic reproductive
number of the virus is less than one, the infection-free equilibrium is globally asymptoti-
cally stable and the infected equilibrium is globally asymptotically stable if the basic
reproductive number is higher than one.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of epidemic and viral dynamics via mathe-
matical modelling has been an interesting topic to investi-
gate in the last decades. Researchers have constructed
mathematical models which could play a significant role
in better understanding diseases and drug therapy strate-
gies to fight against them.

During the process of viral infection, as soon a virus
invades host cells, Cytotoxic T Lymphocytes (CTL’s) play
an important role in responding to the aggression.
Lymphocytes are programmed to kill the infected cells
through the lysine of the infected ones.

To model the immune response during a viral infection,
taking into account the CTL response, researchers consider
the following set of differential equations

_x ¼ s� dx� bxy;
_y ¼ bxy� ay� pyz;
_z ¼ f ðy; zÞ � bz;

where variable x; y and z represent the populations of unin-
fected cells, infected cells, and number of CTL’s by ml of
peripheral blood, respectively. The parameter s represents
a constant source of susceptible cells, b is the infection rate
constant, we assume that a susceptible cell become
infected at rate proportional to the number of infected
cells. Constants d and a represents the death rates of sus-
ceptible and infected respectively. Infected cells are killed
at a rate p by the CTL immune response. The function
f ðy; zÞ describes the rate of immune response due to virus
activation. In this paper we consider f ðy; zÞ ¼ cy�myz,
the term myz represents an immune impairment according
to [1], the CTL cells proliferate at a rate c and decay at rate
m. Linear and bilinear immune response have been consid-
ered in [2–5].

In [4,6,7] time delays have been incorporated for
immune response, since antigenic stimulation generating
CTLs may need a period of time, that is, the activation rate
of CTL response at time t may depend on the population of
antigen at a previous time. On the other hand, it has been
realised recently [8,9,13] that there are also delays in the
process of cell infection and virus production, and thus,
delays should be incorporated into the infection equation
and/or the virus production equation of a model. In this
paper, we consider the following model,
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_x ¼ s� dx� Fðx; yÞ;
_y ¼ Fðxðt � sÞ; yðt � sÞÞ � ay� pyz;
_z ¼ cy� bz�myz:

ð1Þ

We assume that the force of infection at any time t is
given by the general function Fðx; yÞ [14], this general func-
tion includes the cases: bilinear incidence rate bxy, where b
is the average number of contacts per infective; standard
incidence rate bxy=ðxþ yÞ; the Holling type incidence rate
of the form bxy=ð1þ a1xÞ where a1 is a positive constant;
the saturated incidence rate of the form bxy=ð1þ a2yÞ,
where a2 is a positive constant; the saturated incidence
of the form bxy=ð1þ a1xþ a2yÞ, where a1 and a2 are
constants.

In our work we present global stability results for
system (1), several authors have studied the dynamics of
systems with nonlinear incidence rate. Huang et. al. [10]
studied a model with general incidence rate
FðsðtÞÞGðiðt � sÞÞ which did not consider some of our func-
tions, for instance bxy

xþy ;
bxy

1þa1xþa2y. Korobeinikov [11] and

Enatsu et al. [12] considered epidemic SIR, SEIR models,
and used Volterra-type Lyapunov functions to prove the
global stability of the endemic equilibrium state. In our
work we consider a Susceptible–Infected–Virus dynamics,
we use a combination of quadratic and Volterra-type func-
tionals to prove global stability, we also take into account
immune response due to virus activation. This consider-
ation renders a modification of Lyapunov functions used
in previous works, in order to prove global stability of
the infected equilibrium. In a related work, Muroya et. al.
[13] used combinations of common quadratic and
Volterra-type functionals to prove global stability for this
immune response, their results are only for a bilinear inci-
dence rate and delay on the rate of virus production and
delay in the production of virus. They can prove the global
stability for a model without delay and for the delayed
model a Hopf bifurcation occurs. We proposed a general
interaction Fðx; yÞ and a delay in the process of cell
infection and virus production.

The paper is organised as follows in Section 2 we prove
the existence of the positive equilibrium. In Section 3 we
prove that solutions of (1) with positive initial conditions
will remain positive for all time and their boundedness.
The global stability analysis of infected-free and infected
equilibria is analysed in Section 4. We perform a local sen-
sitivity analysis in Section 5 and in Section 6 we present
simulations to illustrate our findings. Finally we draw our
conclusions in Section 7.

2. Existence of equilibria

To find the equilibria of system (1) we need to solve

0 ¼ s� dx� Fðx; yÞ; ð2Þ
0 ¼ Fðx; yÞ � ay� pyz; ð3Þ
0 ¼ cy� bz�myz: ð4Þ

With this end we propose the following conditions for
Fðx; yÞ

1. Fðx; yÞ is continuously differentiable in ½0;1Þ � ½0;1Þ.
(H1) Fðx; yÞ > 0; @F

@x ðx; yÞ > 0; @F
@y ðx; yÞ > 0, for x > 0 and

y > 0.
(H2) Fðx;0Þ ¼ Fð0; yÞ ¼ 0; @F

@x ðx;0Þ ¼ 0; @F
@y ðx;0Þ > 0 for

x > 0 and y > 0.

When x ¼ s
d ; y ¼ 0 and z ¼ 0 the Eqs. (2)–(4) are satisfied,

therefore E0ðsd ;0;0Þ is a steady state called the infection-
free equilibrium.

To find a positive equilibrium we proceed as follows.
From Eq. (4) we have

z ¼ cy
bþmy

: ð5Þ

From Eqs. (2) and (3) we have

s� dx ¼ ayþ pyz) x ¼ s
d
� a

d
y� p

d
yz; substituting ð5Þ

) x ¼ s
d
� a

d
y� pc

d
y2

bþmy
: ð6Þ

Substituting (5) and (6) in (3) we have the following
function HðyÞ

HðyÞ ¼ F
s
d
� a

d
y� pc

d
y2

bþmy
; y

� �
� ay� pc

y2

bþmy
:

Let x0 ¼ s
d, note that Hð0Þ ¼ 0, because Fðx0;0Þ ¼ 0. We can

compute that there exists a positive root y0 such that
s ¼ ayþ pc y2

bþmy, hence

Hðy0Þ ¼ Fð0; y0Þ � s ¼ �s < 0:

And when y P 0, since HðyÞ is continuously differentiable,
we have

H0ð0Þ ¼ � a
d
@F
@x
ðx0;0Þ þ

@F
@y
ðx0;0Þ � a ¼ @F

@y
ðx0;0Þ � a

¼ a
Fyðx0;0Þ

a
� 1

� �
:

Let R0 ¼ Fyðx0 ;0Þ
a . Thus, R0 > 1 ensures that H0ð0Þ > 0. And

HðyÞ is continuous in ½0; y0�, then there exist some

y� 2 ½0; y0�, such that Hðy�Þ ¼ 0. Since ayþ pc y2

bþmy is

increasing, we have ay� þ pc ðy�Þ2
bþmy� < ay0 þ pc

y2
0

bþmy0
. There-

fore x� ¼ s
d� a

d y� � pc
d
ðy�Þ2

bþmy� > 0, also z� ¼ cy�

bþmy� > 0 and we

have proved the existence of the endemic equilibrium
E�ðx�; y�; z�Þ for system (1) under the condition R0 > 1.

Hence we have proved the following theorem:

Theorem 1. Assume that Fðx; yÞ satisfies (H1) and (H2), if
R0 > 1 then system (1) has a positive equilibrium state
E�ðx�; y�; z�Þ.

3. Positivity and boundedness of solutions

We denote by C ¼ Cð½�s;0�;R3Þ the Banach space of
continuous functions / : ½�s;0� ! R3 with norm

jj/jj ¼ sup
�s6h60

j/1ðhÞj; j/2ðhÞj; j/3ðhÞjf g;

where / ¼ ð/1;/2;/3Þ. The nonnegative cone of C is
defined by Cþ ¼ Cð½�s;0�;R3

þÞ.
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