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a b s t r a c t

The discovery of small-world and scale-free properties of many man-made and natural
complex networks has attracted increasing attention. Of particular interest is how the
structural properties of a network facilitate and constrain its dynamical behavior. In this
paper we study the synchronization of weakly coupled limit-cycle oscillators in depen-
dence on the network topology as well as the dynamical features of individual oscillators.
We show that flexible oscillators, characterized by near zero values of divergence, express
maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid)
oscillators are best correlated in more heterogeneous scale-free networks. We found that
the synchronization behavior is governed by the interplay between the networks global
efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid
oscillators. The results are discussed in terms of evolutionary advantages of broad-scale
small-world networks in biological systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks have attracted a great deal of
interest since the discoveries of the small-world [1] and
scale-free [2] properties. Signatures of such exceptional
topological features have been discovered in many natural
and man-made systems, which represents the root of mod-
ern network science [3,4]. It is nowadays a well-known fact
that many real-world networks display degree distribu-
tions that deviate from a Poisson distribution found for
simple random graph models. Generally three classes of
small-world networks have been identified [5]. Very abun-
dant types are scale-free networks (SFNs), whose degree
distribution follows a power law. However, in many real
networks, especially the physically embedded ones, there
are different constraints which hinder the development

of extremely connected nodes in a network, which leads
to a cutoff of the power law regime in the connectivity dis-
tribution or making it disappear altogether. As a result, the
so-called broad-scale networks (BSNs) and single-scale
networks emerge [5].

With the progress in the network science it has been
pointed out that networks can be treated not just as
abstract entities with the vertices or nodes as formless
place-holders, but as oscillators or dynamical systems cou-
pled in the geometry of the network. Perhaps one of the
most studied phenomena in this context is the synchroni-
zation of dynamical nodes in a network. Synchronization in
networks is a very common collective behavior in real sys-
tems and is manifested by the appearance of some forms of
relations between the functions of different dynamical
variables as a result of interactions [6,7].

It is known that structural properties of a network sig-
nificantly affect synchronization behavior. Primal works
have found that complex networks, due to their small net-
work distances, are generally more synchronizable than
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regular networks [7–10]. However, especially SFNs are
characterized by heterogeneity in the degree distribution,
which on one hand tends to reduce the average network
distance, but on the other hand in more heterogeneous
networks synchronization is increasingly harder to achieve
[11]. This issue has been further addressed by several
authors. Motter et al. [12] have revealed that directed
and weighed coupling can balance the heterogeneity in
the degree distribution. Furthermore, Zhou and Kurths
[13] reported that in heterogeneous complex networks
individual oscillators exhibit different levels of synchroni-
zation with respect to the collective dynamics and they
exhibit a hierarchical dependence on the connection
degrees. Moreover, it has been shown that the path to syn-
chronized behavior is in homogeneous networks different
than in heterogeneous network [14,15]. McGraw and
Menzinger [16,17] have shown that the existence of com-
munity structures inside the network can hinder the syn-
chronization of oscillators.

In our previous study [18] we observed that synchroni-
zation of oscillators in a network depends on its heteroge-
neity. We studied synchronization of Rössler oscillators on
a spatially embedded network, where the level of hetero-
geneity could be varied from a highly heterogeneous SFN
to a rather homogeneous random geometric network. It
turned out that the maximal synchronization was obtained
in the intermediate heterogeneous regime, i.e. in the BSN.
The same results of this optimal intermediate network
configuration were also obtained for the Rulkov map,
where we additionally found that the flexibility of individ-
ual oscillators in the network might play an important role
[19]. We further studied this phenomenon and found that
the flexibility of individual oscillators in a network influ-
ences correlation and synchronization of oscillators also
in other systems [20,21]; however, we did not succeed to
explain this phenomenon until now.

In this paper we provide a mathematical explanation why
flexible oscillators, characterized by low values of diver-
gence, express maximal correlation in BSNs, whereas the
non-flexible (rigid) oscillators are best correlated in more
heterogeneous SFNs. To this purpose we use a mathematical
model (Section 2) in which the dynamics of each node in the
network is governed by the dynamics of the Poincaré oscilla-
tor. The network model enables smooth changes of the
topology from a highly heterogeneous SFN to a homoge-
neous network. This setup enables us to explore the relation-
ship between the flexibility of individual oscillators and the
connectivity pattern that leads to the most synchronized
response. The results (Section 3) show that correlations are
maximized for rigid oscillators in a highly heterogeneous
SFN, and for flexible oscillators in a less heterogeneous
BSN. These findings are discussed in Section 4 in terms of a
trade-off between high efficiency and an increased fragility
of the networked systems, which could have an important
role in the evolution of biological systems.

2. Mathematical model

We consider a network of coupled oscillators where the
structure of this network can be varied from a highly

heterogeneous SFN to a homogeneous regular network.
For this purpose we utilize the spatially embedded vertex
fitness model [19,22,23]. Initially each node is labeled with
an integer i and a fitness value f i is prescribed to it, where
the fitness values follow a power-law distribution with a
scaling exponent b = 2.5 [23]. Afterwards all N nodes are
randomly distributed in a unit square. A connection
between the i-th and j-th node is established if the
following conditions is satisfied:

H <
f if j

Idij
; ð1Þ

where H is used as the connectivity threshold that defines
the average node degree of the network hki; Iij is the Euclid-
ean distance between the i-th and j-th node and the
parameter d alters topological features of the network. Fol-
lowing this algorithm we constructed the connectivity
matrix with ij-th element dij equal to 1 if those two nodes
are connected and 0 otherwise. If d is near zero the connec-
tions are accepted only according to the fitness values
independently of the inter-nodal Euclidean distances. In
this case a highly heterogeneous SFN is constructed with
mainly long-range connections. By increasing the topology
parameter d, long-range connections become more rare.
The network topology becomes less heterogeneous, yet the
presence of a few long-range connections still make the
network very efficient in terms of small-world topological
features [24]. Remarkably, the resulting constrains which
limit the lengths of connections cause a cut-off in the
power-law regime, meaning that extremely connected
nodes are missing. Such networks are thus classified as
BSNs [5]. On the other hand, for high values of the topology
parameter d� 1ð Þ only short-range connections are
accepted and the network becomes very homogeneous
and inefficient.

In the network, the dynamics of each node is governed
by the paradigmatic Poincaré oscillator:

_xi ¼ c A� rið Þxi � 2pmiyi þ �
XN

j¼1

dij xj � xi
� �

; ð2Þ

_yi ¼ c A� rið Þyi þ 2pmixi þ �
XN

j¼1

dij yj � yi

� �
; ð3Þ

where _xi and _yi are time derivatives of the variables xi and
yi of the i-th oscillator, A is the limit cycle radius,
ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

q
is the distance from the origin to the attrac-

tor in the phase space, mi is the frequency, � is the coupling
strength and dij is the ij-th element of the connectivity
matrix. The parameter c represents the dissipation rate
for the uncoupled Poincaré oscillator which indicates the
stability of the oscillator with respect to amplitude pertur-
bations [25,26] (see Appendix). We refer to oscillators with
low values of the dissipation parameter c as flexible and
oscillators with high values of the parameter c as rigid
oscillators. Namely, the dissipation rate is directly related
to the oscillators frequency adaptation to an external peri-
odic signal [26–29], as flexible oscillators are easier to
entrain.
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