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a b s t r a c t

We present a study of some properties of transport in small-world and scale-free networks.
Particularly, we compare two types of transport: subject to friction (electrical case) and in
the absence of friction (maximum flow). We found that in clustered networks based on the
Watts–Strogatz (WS) model, for both transport types the small-world configurations
exhibit the best trade-off between local and global levels. For non-clustered WS networks
the local transport is independent of the rewiring parameter, while the transport improves
globally. Moreover, we analyzed both transport types in scale-free networks considering
tendencies in the assortative or disassortative mixing of nodes. We construct the
distribution of the conductance G and flow F to evaluate the effects of the assortative
(disassortative) mixing, finding that for scale-free networks, as we introduce different
levels of the degree–degree correlations, the power-law decay in the conductances is
altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze
the effect on the conductance and the flow of the minimum degree and the shortest path
between the source and destination nodes, finding notable differences between these two
types of transport.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, researchers from different disciplines
have shown an increasing interest in the study of complex
networks [1,2,4,3]. In particular, several approaches to
classify and characterize complex networks have been
proposed, which aim to help in the understanding of the
networks operation and organization under different con-
ditions [5,6], and very recently researchers have addressed
the multiplex character of real-world systems [7]. As it is
well known, a network is comprised of a set of nodes or
vertices, and the set of links or edges that interconnect

the nodes. The links can have a given direction and are
known as directed; and in some cases they represent also
a certain intensity in the connection which leads to net-
works with weighted links. The degree of a node is defined
as the number of links that fall on it, when the links are not
directed. However, in a directed network, the degree can
be either interior (links coming into the node) or exterior
(links coming out of the node). Moreover, the degree distri-
bution PðkÞ, where k is the degree, allows describing the
network connectivity, i.e., this distribution is obtained
from plotting the frequencies against the degree, and char-
acterizes the network; thus, the structure of PðkÞ provides
information on how the links are distributed [8,9]. For
instance, it is known that random networks possess a char-
acteristic connectivity scale [4], meaning that most of the
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nodes have an average number of links, that is described by
a Poisson-like distribution. In many cases, real networks
exhibit the small-world property, that is, the average path
length is small and the clustering coefficient (local struc-
ture) is high [10]. A representative small-world model
was proposed by Watts and Strogatz [10], which interpo-
lates between a regular clustered network and a random
graph; for intermediate configurations the small-world
feature is observed. Moreover, there are networks where
the distribution has no characteristic scale so they are
called scale-free networks for which a significant number
of nodes coexist with few links and few highly connected
nodes known as hubs. For these networks, the degree dis-
tribution is given by a power law: PðkÞ � k�k [9]. Recent
studies on the transport properties in complex networks
have reported that scale-free networks display better
transport conditions than random networks, due to the
presence of hubs [11,12]. Transport in non regular media,
such as complex networks, provides an approach to the
exploration of transport in many real conditions from elec-
trical networks to the Internet [13–17]. Transport within a
network consists of sending an entity from a specific node
called the origin or source to another node called destina-
tion or sink. This problem can be stated as a flow problem
to find the paths from source to destination for which it is
possible to send as much flow as possible while satisfying
capacity constraints on the links and flow conservation at
the intermediate nodes [18,19]. Moreover, transport in
many real situations involves the presence of friction.
These cases can be modeled using analogies with electrical
systems: a positive potential is assigned to the origin node
while a zero potential is assigned to the destination node,
and the links are considered as resistors. Based on the
law of conservation of electrical charge, it is possible to
estimate the current flow from the origin to the
destination. On the other hand, a complex network can
be classified according to the bias or the degree–degree
correlations, i.e., if there is a bias in the connectivity
between nodes with high or low degree, then the network
has assortative or disassortative mixing [20]. Here, we are
interested in evaluating the transport properties in small-
world networks and the effect of assortative (disassorta-
tive) mixing on the transport in scale-free networks.
Particularly, we focus on comparing the transport (with
and without friction) in clustered and declustered small-
world networks, by calculating the average conductance
and the average flow on local and global scales; we find
that for clustered networks and for both transport types,
the best trade-off between local and global levels is
observed for configurations with small-world topology,
while for declustered networks, the transport improves
globally and it is independent of the rewiring parameter.
Besides, we also compare the effect of degree–degree
correlations on the conductance and flow distributions in
scale-free networks for three specific configurations. We
observe a significant difference between the distributions
for the three levels of assortative mixing. Our quantitative
analysis also permits to test the effect on the conductance
and the flow of the minimum degree and the shortest path
between the source and destination nodes, finding notable
differences between these two types of transport. The

paper is organized as follows: In Section 2, a brief descrip-
tion of small-world and scale-free network models is
given. Next, Section 3 describes the way the degree–degree
correlations are introduced. The results and discussion are
given in Section 4. Finally, in Section 5 some conclusions
are presented.

2. Small-world and scale-free networks

Regular networks are the simplest model to describe
the relationship between nodes since all nodes have the
same degree; however, the model is not always appropri-
ate to study real networks. An important model that inter-
polates between a regular and a random network is the
Watts–Strogatz model (WS) [10]: starting with N nodes
arranged in a ring with links to its k next–nearest neigh-
bors (a k-regular network), small-world configurations
can be created through a rewiring process that with some
probability p reassigns links (when p is large enough, this
rewiring process leads to a random network), creating
shortcuts between distant sections of the ring. Thus, for
p ¼ 0 we have the case of a clustered WS network whereas
for intermediate values of p, it is observed a high average
clustering coefficient and short average path length, the
main feature of the small-world network. A declustered
WS model was proposed by Vragović et al. [21] and con-
sists in starting with a regular ring with next–nearest
neighbor connections and adding links from each site to
only its nth neighbors [21]. In this way, the initial
configuration has zero clustering coefficient. In our study,
we consider that shortcuts are created with a random
rewiring process as in the ordinary WS model. We notice
that in the declustered model proposed in [21], the
rewiring procedure considers only the more distant
neighbors of a given site, while nearest-neighbor links
are kept unchanged. In our case, we consider clustered
and declustered WS networks with the same size and
equal number of initial edges.

Moreover in many real systems the description of the
connectivities is given by a power-law/scale-free distribu-
tion. An illustrative model to generate a scale-free network
is that of Barabási–Albert where starting from a set of
nodes with certain links, new nodes join according to the
so-called preferential attachment process: nodes with
more links are more likely to link new nodes [9]. The
emerging network has a degree distribution of the
power-law type PðkÞ � k�k where the exponent, k, depends
on the type of network under consideration [1]. A more
appropriate model to generate scale-free networks with a
random mixing and a defined exponent, consists of using
the Molloy–Reed algorithm on a set of N nodes [22]: in
which, ki copies for each node i are generated, where the
probability of having a degree equal to ki satisfies
PðkiÞ � k�k

i . These copies of nodes are randomly linked,
without repeating links and avoiding self-loops.

3. Degree–degree correlations

Many complex networks exhibit tendencies in the
assortative mixing between nodes. It has been observed
in many cases that high-degree nodes tend to connect
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