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a b s t r a c t

This paper proposes an extended local-world evolving network model consisting of global
strength-driven preferential attachment for one central node, and local weight-driven pref-
erential attachment for nearest neighbors of the central node. Analytical predictions and
numerical simulations were executed for network evolutions and distributions. The
obtained power-law behaviors display the same exponent functions as the ones in a classic
model. More comparisons between these two models were made to investigate the struc-
tural differences that the nearest-neighbor connections result in. Compared with the coun-
terpart, the proposed model shows a higher clustering coefficient, the varying average
shortest path length and the significant hierarchical organization. our model is generally
robustness and yet fragility, and is weaker in synchronizability than the counterpart. All
those results are added to our understanding of how the rule of the nearest-neighbor con-
nections affects the characteristics of weighted evolving network.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The studies of social, biological, economic and numer-
ous other networks have been added to our understand-
ings of complex networks, which exhibit significant
small-world property and scale-free behavior [1–6].
Many real-world networks are represented as weighted
networks [7–11], thus, a amount of evolving weighted
network models have been built to investigate the non-
trivial correlation between edge weight and topological
quantity [12–14]. One classic growing model for weighted
networks was proposed by Barrat, Barthélemy and
Vespignani (BBV) [15,16]. The BBV model is based on the
mechanisms of strength preferential attachment and weight
dynamical evolution. It displays scale-free behaviors for
the distributions of node degree, strength and edge weight.
Many extended models were later designed by adding new

evolution rules including traffic-driven growth [17], spatial
constraints [18], group-based preferential attachment [19]
and accelerating growth [20–22].

In many real-world networks such as the world trade
web [23] and the Internet on router level [24], it is difficult
for one node to obtain global information about the entire
network. A local-world evolving network model was there-
fore introduced to describe the preferential attachment
mechanism on the local level [25]. To improve the low
clustering coefficient, a triad formation step was later
added into local preferential attachment [26,27]. The local
world usually consists of randomly chosen nodes. How-
ever, taking a social network as the example, we find that
one person more easily know s persons in the same com-
munity [28]. Suppose edge weight stands for the closeness
between two persons, and a new individual A has estab-
lished a relationship with the individual B who is famous
(large value of strength). Then A has a high probability to
know the individual C who is a close friend of B based on
closeness between the individuals C and B. We thus build

http://dx.doi.org/10.1016/j.chaos.2014.09.012
0960-0779/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: ruiyikang@gmail.com (Y. Rui).

Chaos, Solitons & Fractals 69 (2014) 172–178

Contents lists available at ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2014.09.012&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2014.09.012
mailto:ruiyikang@gmail.com
http://dx.doi.org/10.1016/j.chaos.2014.09.012
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


the model with one central node and its nearest neighbors
as the local world, which is abbreviated as the NNLW
model. The central node is selected by global strength-dri-
ven preferential attachment while neighbors of the central
node to be connected are selected by local weight-driven
preferential attachment.

The rest of the paper is organized as follows. Section 2
describes the evolutionary rules of the NNLW model. Sec-
tion 3 provides the theoretical predictions and correspond-
ing simulation results for the distributions and evolution of
node degree, strength and edge weight. Section 4 makes
full comparisons between the NNLW model and the BBV
model by investigating the clustering coefficient, epidemic
spreading and synchronization. Finally, Section 5 summa-
rizes this work.

2. A local-world model with the nearest-neighbor
preferential attachment

There are initially N0 completely connected nodes and
e0 edges. A new node n with m edges is added at each time
step, i.e., m existing nodes will be selected to connect the
node n.

(i) Global strength-driven preferential attachment. One
node i is firstly chosen from the existing network as
the central node based on the probability of node
strength:
Y
n!i

¼ siP
l2all sl

: ð1Þ

(ii) Local weight-driven preferential attachment. m� 1
nodes are selected from the nearest neighbors of
the central node i (Xi) to connect to the new node
n according to the probability of edge weight:
Y
n!j

¼ wijP
j02Xi

wij0
¼ wij

si
; ð2Þ

where j0 is one of the nearest neighbors of the central
node i.

The initial weight of each new edge (n; i) is w0. Applying
the same rule in the BBV model, our model rearranges the
weights on all other edges departing from the node i based
on weight ratio:

wij0 ! wij0 þ d
wij0

si
; j0 2 Xi: ð3Þ

The process leads to si ! si þw0 þ d, where d is the weight
increment of the new edge (n; i). We set w0 ¼ 1 and d =
constant in our experiment. After weight updating, the
topological growth and weight dynamic run for another
new node until the desired network size is reached.

3. Analytical calculations and numerical simulations

3.1. Degree and strength distributions

It is obvious that time equals the number of nodes
added into the network, i.e., the network totally has

N ¼ t þ N0 nodes and mt þ e0 edges at time t. According
to topological growth rules, when a new coming node n
is added, one existing node i can be chosen either as the
central node with probability given by Eq. (1), or as one
of the nearest neighbors of the central node j by Eq. (2).
The time evolution equation for ki is:

dki

dt
¼ siP

l2all sl
þ ðm� 1Þ

X
j2Xi

sjP
l2all sl

wij

sj
¼ m

siP
l2all sl

: ð4Þ

According to the weight dynamic mechanism, the
strength si of node i increases when the new node n con-
nects either to i with the increment value of 1þ d, or to
the nearest neighbors of node i with the increment value
of ðwij=sjÞd. Therefore,

dsi

dt
¼m

siP
l2allsl

1þdð Þþ
X
j2Xi

sjP
l2allsl

þ m�1ð Þ
X
k2Xj

skP
l2allsl

wkj

sk

0
@

1
A wij

sj
d

� �

¼m
siP

l2allsl
1þdð Þþm

siP
l2allsl

d¼m
siP
l2allsl

ð1þ2dÞ: ð5Þ

The total strength increased by each added edge is
2ð1þ dÞ, implying

P
i2allsiðtÞ � 2mð1þ dÞt. Eq. (5) can be

solved with the initial condition siðt ¼ iÞ ¼ m, yielding

siðtÞ ¼ mðt=iÞð1þ2dÞ=ð2þ2dÞ. According to Eqs. (4) and (5),
kiðtÞ ¼ siðtÞ=ð1þ 2dÞ is obtained and displays a proportion-
ality relation s � k.

Numerical simulations were performed to validate the
obtained analytical predictions. Numerical results of time
evolution for node strength in the top panel of Fig. 1 are
consistent with the theoretical ones. The bottom panel of
Fig. 1 shows that the relationship between the strength si

and degree ki always a linear, which is consistent with
the predicted coefficient 1þ 2d.

Suppose the time is uniformly distributed in [0, t] when
the node i is added into the network, and then strength
probability distribution is written as:

Pðs; tÞ ¼ 1
t þ N0

Z t

0
d½s� siðtÞ�di; ð6Þ

where dðxÞ is the Dirac delta function.
Because the infinite size limit t !1, node strength dis-

tribution is PðsÞ � s�cs with cs ¼ 3þ4d
1þ2d 2 2;3ð �. Node degree is

linearly related to node strength, thus, the degree distribu-
tion PðkÞ also has a power law form PðkÞ � k�ck with the
exponent ck identical to cs. Fig. 2 shows the strength prob-
ability distributions PðsÞ for different values of d. The
power-law behaviors of PðsÞ are consistent with the theo-
retical predictions.

3.2. Weight distributions

In the process of network growth, the increase of edge
weight wij is induced by a new connection between node
n and node i (node j) with the following changing rate:

dwij

dt
¼m

siP
l2all sl

d
wij

si

� �
þm

sjP
l2all sl

d
wji

sj

� �
¼ d

1þd
wij

t
: ð7Þ

Suppose tij is the time when the edge ði; jÞ is established.
The equation can be solved as wijðtÞ ¼ ðt=tijÞd=ð1þdÞ with
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