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a b s t r a c t

We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire
neurons against infinitesimal and finite perturbations. In particular, we compare mean ver-
sus fluctuations driven networks, the former (latter) is realized by considering purely excit-
atory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the
system can be completely captured by an usual linear stability (Lyapunov) analysis,
whereas the inhibitory networks can display the coexistence of linear and nonlinear insta-
bilities. The nonlinear effects are associated to finite amplitude instabilities, which have
been characterized in terms of suitable indicators. For inhibitory coupling one observes a
transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For suffi-
ciently fast synapses the system, despite showing an erratic evolution, is linearly stable,
thus representing a prototypical example of stable chaos.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that cortical neurons in vivo present a high
discharge variability, even if stimulated by current injec-
tion, in comparison with neurons in vitro [1,2]. In particu-
lar, these differences are peculiar of pyramidal neurons,
while inter-neurons reveal a high neuronal firing variabil-
ity in both settings [3]. This variability is usually measured
in terms of the coefficient of variation CV of the single neu-
ron inter-spike interval (ISI), defined as the normalized
standard deviation of the ISI, i.e, CV ¼ STDðISIÞ=hISIi [4].
For cortical pyramidal neurons CV ’ 1:0 in vivo [1] and
CV < 0:3 in vitro [2], while for cortical inter-neurons
CV ’ 1:0� 1:2 [3] in both settings. The variability of the
spike emissions in vivo resembles a stochastic (Poissonian)
process (where CV ¼ 1), however the neural dynamics fea-
tures cannot be accounted by simple stochastic models [1].
These phenomena can be instead modelized by consider-
ing a deterministically balanced network, where inhibitory

and excitatory activity on average compensate one another
[5–8]. Despite the many papers devoted in the last two
decades to this subject, it is still unclear which is the
dynamical phenomenon responsible for the observed
irregular dynamics [9–12].

A few authors pointed out the possibility that stable
chaos [13] could be intimately related to the dynamical
behavior of balanced states [14–19]. Stable chaos is a
dynamical regime characterized by linear stability (i.e.
the maximal Lyapunov exponent is negative), yet display-
ing an erratic behavior over time scales diverging exponen-
tially with the system size. Stable chaos has been
discovered in arrays of diffusively coupled discontinuous
maps [20] and later observed also in inhibitory neural net-
works [14]. This phenomenon is due to the prevalence of
nonlinear instabilities over the linear (stable) evolution of
the system. This leads in diffusively coupled systems to
propagation of information (driven by nonlinear effects)
and in diluted inhibitory networks to abrupt changes in
the firing order of the neurons [13].

Clear evidences of stable chaos have been reported in
inhibitory d-coupled networks by considering conductance
based models [14] as well as current based models with
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time delay [15–18]. In particular, these analyses focused on
the characterization of the time needed for the transient
irregular dynamics to relax to the final stable state, the
authors convincingly show that these transients diverge
exponentially with the system size, a key feature of stable
chaos. Furthermore, in [16,17] it has been shown that, con-
sidering time extended post-synaptic pulses, a transition
from stable to regular chaos is present, where fluctuation
driven dynamics is apparently maintained [17].

In this paper, we would like to compare the dynamics of a
balanced network, whose dynamics is driven by fluctuations
in the synaptic inputs, with neural networks composed of
tonically firing neurons. Similar comparisons have been per-
formed in some previous studies [21,22], however here we
would like to focus on the role of nonlinear instabilities and
in particular on indicators capable of measuring finite ampli-
tude instabilities in such networks. The effect of finite pertur-
bations is relevant from the view point of neuroscience,
where the analysis is usually performed at the level of spike
trains, and a minimal perturbation corresponds to the
removal or addition of a spike. This kind of perturbations
can produce a detectable modification of the firing rate
in vivo in the rat barrel cortex [23]. This has been reported
as the first experimental demonstration of the sensitivity of
an intact network to perturbations in vivo, or equivalently
of an erratic behavior in neural circuits. However, it is unclear
whether this sensitivity should be associated to linear or non-
linear effects. In particular the authors in [23] considered a
network composed of excitatory and inhibitory neurons,
where an extra spike in the excitatory network is soon com-
pensated by an extra spike in the inhibitory network, indicat-
ing a sort of balance in the activity of the studied neural
circuit. The ability of a perturbed balanced network to restore
rapidly the steady firing rate has been also discussed in [19]
for a minimal model. Furthermore, Zillmer et al. [16] have
shown that a finite perturbation in a stable regime can cause
a divergence of the trajectories.

These latter numerical studies, together with the fact
that the addition of an extra spike is clearly a finite pertur-
bation from the point of view of dynamical systems,
strongly demand for further experimental investigations
to clarify whether the erratic behavior reported in [23] is
due to infinitesimal or finite amplitude instabilities.

Even though all these findings are congruent with the
nature of stable chaos [13], it must be noted that a careful
characterization of this regime in neural networks in terms
of finite amplitude indicators is still lacking. The only pre-
vious study examining this aspect in some detail concerns
a purely inhibitory recurrent Leaky Integrate-and-Fire (LIF)
neural network with an external excitatory drive, which
can sustain balanced activity [19]. Starting from this anal-
ysis, which was limited to d-pulses, we have considered an
extension of the model to finite width pulses. Furthermore,
we have characterized the linearized evolution via usual
Lyapunov exponents and the nonlinear effects in terms of
the response of the system to finite perturbations. This
analysis has been performed by employing previously
introduced indicators such as Finite Size Lyapunov Expo-
nents (FSLEs) [24] or the probability that a finite perturba-
tion can be (exponentially) expanded [19], and new
indicators capable of capturing nonlinear instabilities.

The paper is organized as follows: Section 2 is devoted
to the introduction of the neural network model used
through this paper, together with the indicators character-
izing linear and nonlinear instabilities. Section 3 presents a
comparative study of the linear and nonlinear stability
analysis with emphasis on the influence of the pulse-width
and the size of the network on the dynamical behavior.
Finally, in Section 4 we discuss our results with respect
to the existing literature and we report possible future
developments of our research.

2. Model and methods

We will consider a network of N Leaky Integrate-and-
Fire (LIF) neurons, where the membrane potential v i of
the ith neuron evolves as

_v iðtÞ ¼ a� v iðtÞ þ IiðtÞ i ¼ 1; . . . ;N; ð1Þ

where a > 1 is the supra-threshold neuronal excitability,
and Ii represents the synaptic current due to the pre-
synaptic neurons projecting on the neuron i. Whenever a
cell reaches the threshold value v th ¼ 1 a pulse is emitted
instantaneously towards all the post-synaptic neurons,
and its potential is reset to v r ¼ 0. The synaptic current
IiðtÞ ¼ gEi is the superposition of the pre-synaptic pulses
sðtÞ received by the neuron i with synaptic strength g,
therefore the expression of the field Ei reads as

EiðtÞ ¼
1

Kc

X
j–i

X
njtn<t

CijHðt � tnÞsðt � tnÞ: ð2Þ

Here the sum extends to all the spikes emitted in the
past in the network, Hðt � tnÞ is the Heaviside function
and the parameter c controls the scaling of the normaliza-
tion factor with the number K of pre-synaptic neurons.
Proper normalization ensures homeostatic synaptic inputs
[25,26]. The elements of the N � N connectivity matrix Cij

are one (zero) in presence (absence) of a connection from
the pre-synaptic jth neuron to the post-synaptic ith one.
In this paper we limit our analysis to random sparse net-
works, where each neuron receives exactly K pre-synaptic
connections and this number remains fixed for any system
size N. The model appearing in Eqs. (1) and (2) is adimen-
sional, the transformation to physical units is discussed in
Appendix A.

Following [5], we assume that the pulses are a-func-
tions, sðtÞ ¼ a2t expð�atÞ, in this case the dynamical evolu-
tion of the fields EiðtÞ is ruled by the following second order
differential equation (ODE):

€EiðtÞ þ 2a _EiðtÞ þ a2EiðtÞ ¼
a2

Kc

X
j–i

X
njtn<t

Cijdðt � tnÞ; ð3Þ

which can be conveniently rewritten as two first order
ODEs, as

_Ei ¼ Pi � aEi; _Pi ¼ �aPi þ
a2

Kc

X
j–i

X
njtn<t

Cijdðt � tnÞ; ð4Þ

by introducing the auxiliary field Pi ¼ _Ei � aEi.
Eqs. (1) and (4) can be exactly integrated from the time

t ¼ tn, just after the deliver of the nth pulse, to time t ¼ tnþ1
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