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a b s t r a c t

A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying
systems, using a delayed state feedback scheme, is presented. It is discussed that such sys-
tems can show chaotic behavior as their parameters change. A strategy is employed for on-
line calculation of the Lyapunov exponents that will be used within an adaptive scheme
that decides on the control effort to suppress the chaotic behavior once detected. The
scheme is further augmented with a nonlinear observer for estimation of the states that
are required by the controller but are hard to measure. Simulation results for chaotic con-
trol problem of Jin map are provided to show the effectiveness of the proposed scheme.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis and control of chaotic behavior in dynamic systems have been widely investigated in recent years [1–10]. To
name a few, Ott et al., [1] developed a control scheme, called the OGY method, for stabilizing unstable periodic orbits embed-
ded in chaotic attractor via a small control perturbation. Several extensions and successful applications of the OGY method
have also been reported [4,11]. The OGY method and its extensions are, however, of state feedback control type, in that all
states in control system are to be observed for control purposes [29]. Delayed state feedback control (DSFC) concept was
developed, based on the difference between the current and the s-time delayed output signals, to suppress the chaotic
behavior in nonlinear continuous systems, where s is a period of the stabilized periodic orbit [12–14]. The method, which
is known for its simplicity [15,16], was further extended to nonlinear discrete-time systems [17,18]. Lyapunov exponents
have also been used to quantify the chaos degree in complex dynamic systems [26,28], and effective computational tools
for their calculation were proposed [19,27].

In this paper, a new method to adaptive control of chaos in nonlinear discrete-time systems is introduced. The focus is
placed on systems that are originally bounded but can show chaotic behavior under parametric variation. The proposed ap-
proach employs an adaptive delayed state feedback control scheme. This scheme identifies chaos via on-line calculation of
Lyapunov exponents. The calculation of Lyapunov exponents proposed earlier [20–22] will be used where an efficient QR-
factorization technique [23] is employed for estimation of the Lyapunov exponents for systems whose time-varying param-
eters are to be identified via a generalized recursive least squares algorithm. The gain of the delayed state feedback controller
is then adjusted, on-line, as a function of the maximum Lyapunov exponent. Variation of the control gain is consistent with
the sign of the calculated Lyapunov exponent; it is assigned a very low value when the maximum Lyapunov exponent is neg-
ative and is set to a sufficiently high value when the maximum Lyapunov exponent becomes positive to suppress the chaotic
behavior. The manner in which the gain is changed, is optimized for better response via an off-line genetic algorithm and the
bounds on the controller gain are determined by invoking to the stability analysis of the entire closed-loop control system.
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Finally, the proposed controller is augmented with a nonlinear observer for those states of the system that are not measur-
able for feedback. An example is considered to substantiate the development made in this paper and comparison between
the performance of the proposed controller and the one previously reported by the authors based on the gradient method
[21] will be conducted. It is shown that the new controller takes less time to converge, and the convergence is less dependent
upon the adaptation gain and does not lead to saturation of the control signal reported earlier in the application of gradient
method.

2. Problem statement and controller development

Consider a discrete-time nonlinear dynamic system in the general form:

xðkþ 1Þ ¼ f ½xðkÞ� ð1Þ

where k = 0,1,.. is the number of the sampling instants, f is continuously differentiable, at least locally in a region of interest,
and x(k) 2 Rn. Here, we consider a class of nonlinear discrete-time systems which are originally not chaotic or unbounded but
can show chaotic behavior when certain parameters of the system change during the system operation. Once the chaotic
behavior occurs, at least one of the Lyapunov exponents of the system becomes positive. For stabilizing the unstable periodic
orbits embedded in the chaotic attractor, a delayed state feedback control scheme (DSFC) is applied. Thus, the dynamic sys-
tem (1), is augmented with control input sequence, u(k) 2 Rl(l 6 n) as follows:

xðkþ 1Þ ¼ f ½ðxðkÞ;uðkÞ� ð2Þ

where

uðkÞ ¼ K½xðk� 1Þ � xðkÞ� ð3Þ

and K 2 Rl�n is the state feedback gain. A few remarks about the above control system are presented in the ensuing
discussion.

Remark 1. Consider the linearized model of (2) as shown below:

dxðkþ 1Þ ¼ AdxðkÞ þ BuðkÞ ð4Þ

Where, �x is the fixed point of (1), A ¼ of ðx;uÞ
ox jx¼�x;u¼0;B ¼

of ðx;uÞ
ou jx¼�x;u¼0 and dxðkÞ ¼ xðkÞ � �x.

Note that Eq. (3) is equivalent to the following equation:

uðkÞ ¼ K½dxðk� 1Þ � dxðkÞ� ð5Þ

Let dz(k) = dx(k � 1). Then, the linearized system of (2) around fixed point �x can be written as follows:

dxðkþ 1Þ
dzðkþ 1Þ

� �
¼

A� BK BK

I 0

� �
dxðkÞ
dzðkÞ

� �
ð6Þ

where I is a (n � n) identity matrix. As is seen, the local stability of (2) is reduced to the stability of the linear system (6). By
studying Eq. (6), the dependence of the stability of the control system (2) on the value of K is clearly observed. As will be seen
later, we will use the above approach to determine constraints on K. It is important to note that, if A has an odd number of
real eigenvalues greater than one, then there does not exist K, such that (6) is asymptotically stable [17].

Remark 2. Characteristics of the nonlinear system (1) heavily depends on the manner in which its parameters change. In
particular, the sign of Lyapunov exponents can change with parameter variations. When the maximum Lyapunov exponent
becomes positive, it indicates a chaotic behavior. In that case, the controller (3) needs to act at full power to stabilize the
system, otherwise it should stay inactive.

Thus, the elements of the state feedback gain, K, are chosen to change with the maximum Lyapunov exponent in the fol-
lowing manner:

K ¼ ½kij� ¼
bij

1þ e�aijsignðkmaxÞ

� �
ði ¼ 1; . . . ; l; j ¼ 1; . . . ; nÞ ð7Þ

In (7), parameters aij and bij are positive constants and kmax is the maximum Lyapunov exponent of the control system. Prop-
er tuning of parameters aij and bij is therefore essential to achieve a good performance. As will be described later in this pa-
per, the tuning is done through an off-line optimization using a genetic algorithm.

3. Design of nonlinear state observer

The delayed state feedback control scheme requires that the states of the nonlinear system be accessible at all time. Thus,
the controller must be augmented with an observer to make the controller realizable. Fig. 1 shows the block diagram of the
proposed nonlinear observer. The nonlinear control system (2) with the measurable output vector y(k) 2 Rp is as follows:

A.Y. Goharrizi et al. / Chaos, Solitons and Fractals 41 (2009) 2448–2455 2449



Download English Version:

https://daneshyari.com/en/article/1889090

Download Persian Version:

https://daneshyari.com/article/1889090

Daneshyari.com

https://daneshyari.com/en/article/1889090
https://daneshyari.com/article/1889090
https://daneshyari.com

