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This paper deals with the synchronization problem of a class of chaotic nonlinear neu-
ral networks. A feedback control gain matrix is derived to achieve the state synchro-
nization of two identical nonlinear neural networks by using the Lyapunov stability
theory, and the obtained criterion condition can be verified if a certain Hamiltonian
matrix with no eigenvalues on the imaginary axis. The new sufficient condition can
avoid solving an algebraic Riccati equation. The results are illustrated through one
numerical example.

� 2009 Published by Elsevier Ltd.

1. Introduction

Recently, many efforts have mainly been devoted to the stability analysis and periodic oscillations of different kinds
of neural networks [1–8]. It has been shown that such neural networks can exhibit complicated dynamics and even cha-
otic behavior if the parameters and time delays are appropriately chosen for the neural networks [9]. Up to now, there
have been some studies in the synchronization of this class of chaotic neural networks with or without delays [10–15].
Cao et al. [10] analyzed synchronization of almost all kinds of coupled identical neural networks based on a simple
adaptive feedback scheme. Zhou et al. [11] investigated lag synchronization of coupled chaotic delayed neural networks
without noise perturbation by using adaptive feedback control techniques. Gu et al. [12] investigated complete synchro-
nization of star-shaped complex networks using linear stability analysis. In [13], the authors discussed asymptotic syn-
chronization of a class of neural networks with reaction-diffusion terms and time-varying delays. More recently, based
on the Lyapunov functional method and Hermitian matrices theory, the authors [14] derived a synchronization criterion
for coupled delayed neural networks, and Cheng et al. [15] applied the method into the synchronization for a class of
neural networks with time-varying delays.

As a continuation of their previous published results, in this paper, a sufficient condition for the exponential synchroni-
zation of a class of chaotic nonlinear neural networks with time-varying delays is further exploited. The criteria are pre-
sented by employing the Lyapunov stability method and Hermitian matrices theory. A numerical example illustrates the
applicability of the proposed approach.

1.1. Notations

In the sequel, we denote AT
;A�1 the transpose of, inverse of any square matrix A, respectively. We use A > 0; ðA < 0Þ to

denote a positive- (negative-) definite matrix A; and I is used to denote the n� n identity matrix. The vector norm is taken
to be Euclidian, denoted by k � k. diagð�Þ denotes a block diagonal matrix. kðAÞ denotes the eigenvalue of a square matrix A. Rn

and Rm�n denote, respectively, the n-dimensional Euclidean space, and the set of all m� n real matrices.
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2. Synchronization problem formulation

Based on the drive-response concept, the unidirectional coupled nonlinear neural networks are described by the follow-
ing equations:

_xiðtÞ ¼ �ciðxiðtÞÞ þ
Xn

j¼1

DijfjðxjðtÞÞ þ
Xn

j¼1

Ds
ijfjðxjðt � sjðtÞÞÞ þ Ji; ð1Þ

_ziðtÞ ¼ �ciðziðtÞÞ þ
Xn

j¼1

DijfjðzjðtÞÞ þ
Xn

j¼1

Ds
ijfjðzjðt � sjðtÞÞÞ þ Ji þ uiðtÞ; ð2Þ

for i ¼ 1;2; . . . ;n; where n P 2 denotes the number of neurons in the network, xi is the state variable associated with the ith
neuron. D ¼ ðDijÞn�n, Ds ¼ ðDs

ijÞn�n indicate the interconnection strength among neurons without and with time-varying delay
sjðtÞP 0, respectively. The function fi describes the manner in which the neurons respond to each other. While Ji is an exter-
nal constant input; and uiðtÞ is unidirectional coupled term which is considered as the control input and will be appropriately
designed to obtain a certain control objective. Furthermore, it is assumed that sðtÞ ¼ ðs1ðtÞ; s2ðtÞ; . . . ; snðtÞÞT , s� ¼maxðsjðtÞÞ
and r ¼maxð _sjðtÞÞ < 1 for j ¼ 1; . . . ; n and t P 0, where s� and r are constants, and the systems (1) and (2) possess initial
conditions xiðtÞ ¼ /iðtÞ 2 C½�s�;0�;RÞ and ziðtÞ ¼ uiðtÞ 2 C½�s�; 0�;RÞ, where C½�s�;0�;RÞ denotes the set of all continuous
functions from ½�s�;0� to R.

We further assume that the functions aið�Þ and fjð�Þ satisfies the following conditions.

(H1) Each function ci : R! R is locally Lipschitz and nondecreasing, and there exists a positive real ai such that c0iðxÞP ai for
any x 2 R at which ci is differentiable. Let A ¼ diagðaiÞ; i ¼ 1;2; . . . ;n.

(H2) Each fj : R! R is monotonic nondecreasing and globally Lipschitz, i.e. there exists a positive real kj > 0 such that

0 6 ðfjðxÞ � fjðyÞÞ=ðx� yÞ 6 kj; j ¼ 1;2; . . . ;N

for any x; y 2 R; x–y.

Definition 1. The system (1) and the uncontrolled system (2) (i.e. u � 0 in (2)) are said to be exponentially synchronized, if
there exist constants bðaÞP 1 and a > 1 such that

jxiðtÞ � ~xiðtÞj 6 bðaÞ sup
�s�6s60

j/iðsÞ �uiðsÞje�at8t P 0; i ¼ 1;2; . . . ;n: ð3Þ

Constant a said to be the degree of exponential synchronization.
Exponential synchronization problem: The exponential synchronization problem considered here is to determine the

control input ui associated with the state-feedback for the purpose of exponentially synchronizing the two identical chaotic
nonlinear neural networks (1) and (2) with the same system’s parameters except the differences in initial conditions.

3. Some criteria for exponential synchronization

3.1. Controller design

Let us define the synchronization error signal eiðtÞ ¼ xiðtÞ � ziðtÞ, where xiðtÞ and ziðtÞ are the ith state variable of the drive
and response neural networks, respectively. Therefore, the error dynamics between (1) and (2) can be expressed by

_eiðtÞ ¼ �biðeiðtÞÞ þ
Xn

j¼1

DijgjðejðtÞÞ þ
Xn

j¼1

Ds
ijgjðejðt � sjðtÞÞÞ � uiðtÞ; ð4Þ

for i ¼ 1;2; . . . ; n, where

biðeiðtÞÞ ¼ aiðxiðtÞÞ � aiðziðtÞÞ;
gjðejðtÞÞ ¼ fjðxjðtÞÞ � fjðzjðtÞÞ;
gjðejðt � sjðtÞÞÞ ¼ fjðxjðt � sjðtÞÞÞ � fjðzjðt � sjðtÞÞÞ:

Here, from (H1) and (H2), we can obtain that the function gið�Þ satisfies 0 6 eiðtÞgiðeiðtÞÞ 6 kie2
i ðtÞ, and according to the

Lebourg Theorem [17], there exist ci P ai such that biðeiðtÞÞ ¼ cieiðtÞ; i ¼ 1;2; . . . ;N.
If the state variables of the drive system are used to drive the response system, then the control input vector with state

feedback is designed as follows:
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