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ARTICLE INFO ABSTRACT
Article history: This work presents two simple and robust techniques based on time delay estimation for
Accepted 26 September 2008 the respective control and synchronization of chaos systems. First, one of these tech-

niques is applied to the control of a chaotic Lorenz system with both matched and mis-
matched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay
estimation and desired error dynamics is inserted. Second, the other technique is applied
to the synchronization of the Lii system and the Lorenz system with uncertainties. The
synchronization input consists of three elements that have transparent and clear mean-
ings.

Since time delay estimation enables a very effective and efficient cancellation of distur-
bances and nonlinearities, the techniques turn out to be simple and robust. Numerical
simulation results show fast, accurate and robust performance of the proposed tech-
niques, thereby demonstrating their effectiveness for the control and synchronization
of Lorenz systems.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A chaotic system is sensitive to initial conditions, highly nonlinear, irregular, and complex. Chaotic behaviors have been
studied extensively since the first classical chaotic attractor was introduced by Lorenz [1]. Since the pioneering research of
controlling chaos [2], some of the research moved from the pure analysis of chaos to the control and synchronization of
chaos. In most engineering systems, chaotic behavior is undesirable, and the goal of chaos control is to suppress or remove
chaotic behavior, and to provide the system with stable and predictable behaviors. On the other hand, in the applications of
secure communications, biological systems, chemical reactions, and information processing, prescribed chaotic behaviors
are wanted, and the goal of chaos synchronization is to make the chaotic states of the system to track the desired chaotic
trajectory.

As an example of chaotic systems to be controlled, the Lorenz system is popular because the Lorenz system is
simple among many chaotic systems, yet captures many features of chaotic dynamics [3,4]. Various methods have
been introduced to control or synchronize the Lorenz system. For example, bang-bang control [3], sliding mode con-
trol [4], feedback linearization [5], adaptive control [6-8], backstepping control [9,10], neural networks [11,12], and
others in [13]. Recently, fusions of aforementioned control methods have been carried out to achieve more sophisti-
cated control performance. For example, fuzzy logic and adaptive control is merged in [14,15]; adaptive and backstep-
ping technique are merged in [16]; advantages of the adaptive control, neural network and sliding mode control are
combined in [17]; fuzzy adaptive sliding mode is used in [18]; and adaptive neural-fuzzy-network control is proposed
in [19].
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To find out satisfactory solutions to chaos control and synchronization, in general, we should continue our research on the
modeling and analysis of chaotic systems, and on fusing existing control methods, so that they become applicable to wider
problem domain and provide more robust performance. In the mean time, when the parameters of chaotic systems are
poorly understood, and if the practical implementation is considered, a viable alternative should be to pursue simplicity
and transparency while preserving robustness. As for the simplicity, the control structure should have small number of terms
in control input. As for the transparency, the control structure and the effect of tuning parameters should be transparent to
designers.

As such a technique, we present a control technique using time delay estimation (TDE) method. The TDE was originally
introduced to control robot manipulators [20-22]. The main idea of the TDE is to estimate unknown dynamics and distur-
bances by intentionally using time-delayed information. This estimation is used by our proposed technique to cancel the un-
known dynamics and disturbances, while at the same time the desired dynamics is injected into the plant. The effectiveness
of the TDE has consistently been crucial to the extraordinary robustness and simplicity demonstrated in [20-22] and other
research works. Its effectiveness also motivates us to formulate the proposed technique for the control and synchronization
of chaos dynamics, with expectations that the technique becomes simple in form, easy to implement, and yet robust.

There is another chaos control method intentionally using time-delay, which is called Pyragas method [23,24]. No prior
goal (i.e. desired constant, periodic, or chaotic trajectory) can be specified in Pyragas method; the goal can only be achieved
by trial-and-error in Pyragas method. On the contrary, the goal (desired constant, periodic, or chaotic trajectory) can be pre-
cisely specified and achieved through the proposed control using TDE technique.

This paper is organized as follows. In Section 2, we present TDE based control for regulations of the Lorenz system with
matched and mismatched uncertainties. Section 3 presents simulation results for regulations of the Lorenz system. In Section
4, we design TDE based synchronizing technique for two different chaotic systems. Section 5 presents simulation results of
the synchronization of two chaotic systems (the Lii system and the Lorenz system with parameter variation and distur-
bance). Finally, in Section 6, we give some concluding remarks.

2. Regulation of the Lorenz system using TDE

The classical Lorenz system is described as

X1 = —0X1 + 0Xy,
Xy = TX1 — X3 — X1X3, (1)
).(3 = X1X3 — bX37

where x; denotes the convective fluid motion, x, denotes the horizontal temperature variation, and x; denotes the vertical
temperature variation; g, b, and r are real positive parameters that represent the Prandtl number, a geometric factor, and the
Rayleigh number, respectively.

The control of the Lorenz system is often realized by adding a control input u to the differential equation of state x, [3]. A
closed-loop experiment of the Lorenz equations with control input is given in [25]. Recently, bounded disturbance is consid-
ered in the differential equation of state x;, and the differential equation of state x, to emulate more practical situation [4].

Then, the controlled Lorenz system is expressed by

X1 = —0X1 +0Xy +dq, (2a)
Xy =TX; — Xy — X1X3 +dy + U, (2b)
5(3 = X1Xy — bX37 (ZC)

where d; and d, denote unknown disturbances, which are assumed to be continuous and bounded. As previous contributions
[4,26], the control objective is to regulate x; to a given constant x;,. Setting x; (t) = x4, in (1), we can obtain the other equi-
librium points of the states, which are x,(t) = x4, X3(t) = x2,/b. Thus, the goal is to design a control input v in order to reg-
ulate to a specific point Pr = (X1, X2r, X3:) = (X1r,X1r,X3,/b). The differential equation of state xs, (2c), is internally stable when
x1(t) and x,(t) converge to x;,. So we will focus on the control of (2a) and (2b) from now on.

Defining the errors as e; = x; — X1, €2 = X — X2y, We can rewrite (2a) and (2b) as

é1 =—o0e; +0e, + 1,

—
w
=

e, =f(er,e2,€3) + 1, (4)
where

Ny = 0(Xar — X1r) + d, (3)

f(e1,e5,e3) =€y — €3 — X3,81 — X173 — €183 — X1;X3r — Xor + X1, + . (6)

Note that since d, was assumed to be continuous, f(e;, e;,e3) becomes a continuous function, and because of this the
approximation holds that f(eq(t),e2(t),es(t)) = f(e1(t — L),e2(t — L), e3(t — L)) provided that L is sufficiently small. In other
words, f(e(t),ex(t),es(t)) can be estimated by using f(e;(t —L),e,(t — L), es(t — L)). Let this estimation, the so-called TDE,
be formally defined as
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