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a b s t r a c t

This article investigates a class of near-Hamiltonian systems and obtains some new condi-
tions for the existence of multiple limit cycles with the help of the first order Melnikov
function. As applications to the obtained main results, a cubic reversible isochronous sys-
tem under cubic polynomial perturbations is studied.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Consider a near-Hamiltonian system of the form

_x ¼ Hyðx; y; kÞ þ �pðx; y; �; kÞ;
_y ¼ �Hxðx; y; kÞ þ �qðx; y; �; kÞ;

ð1:1Þ

where 0 < �� k� 1 and Hðx; y; kÞ; pðx; y; �; kÞ; qðx; y; �; kÞ
are C1 functions. Suppose the unperturbed vector field
has a family of periodic orbits for k small given by

LkðhÞ : Hðx; y; kÞ ¼ h; h 2 Jk; ð1:2Þ

which reduces to

L0ðhÞ : Hðx; y;0Þ ¼ h; h 2 J0 ¼ ða;bÞ

for k ¼ 0. Eq. (1.1) has a displacement function of the form
for � small

dðh; �; kÞ ¼ �Mðh; kÞ þ Oð�2Þ; ð1:3Þ

where

Mðh; kÞ ¼
I

LkðhÞ
dx� pdy

�����
�¼0

: ð1:4Þ

It has a representation as a power series in k

Mðh; kÞ ¼ M0ðhÞ þ kM1ðhÞ þ . . .þ knMnðhÞ þ Oðknþ1Þ;
ð1:5Þ

which is convergent for small k, where

M0ðhÞ ¼ Mðh;0Þ ¼
I

L0ðhÞ
qdx� pdy

�����
�¼k¼0

: ð1:6Þ

Apparently, by the implicit function theorem, the zeros
of (1.4) give some information about the zeros of (1.3) (see
[4–12]), which determine the number of limit cycles of
(1.1) emerging from LkðhÞ. The function Mðh; kÞ in (1.4) is
called the first order Melnikov function. The weakened
Hilbert 16th problem, originally posed by Arnold [1] in
1977, is to find an upper bound of the number of zeros of
(1.4) for polynomials p; q and H.

If M in (1.5) has the form

Mðh; kÞ ¼ kn ~Mðh; dÞ þ Oðknþ1Þ; ð1:7Þ

where d 2 D � Rm with D compact, then the number of
limit cycles of Eq. (1.1) can be obtained by studying the
number of zeros of the function ~Mðh; dÞ for h 2 ða; bÞ.

In particular, if we further suppose that L0ðhÞ
approaches an elementary center point of Eq. (1.1). j�¼k¼0,
denoted by L0ðaÞ, as h! a, then for h near a one can find
that from Han [2]
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~Mðh; dÞ ¼
X
jP0

~bjðdÞðh� aÞjþ1
: ð1:8Þ

In this case, the number of limit cycles appearing near
the center L0ðaÞ can be studied by using the coefficients
f~bjg following the idea of [2]. For example, if there exist
k P 1 and d0 such that

~bkðd0Þ– 0; ~bjðd0Þ ¼ 0; rank
@ð~b0; . . . ; ~bk�1Þ

@d
ðd0Þ ¼ k;

j ¼ 0; . . . ; k� 1;

then Eq. (1.1) has at least k limit cycles for some ð�; k; dÞ
near ð0;0; d0Þ at the center La.

This paper is devoted to giving the formulas for M1 and
M2 appearing in (1.5), and studying the number of limit
cycles of Eq. (1.1) by using M1 and M2. For the purpose,
we write the functions H; p and q into the expansions

Hðx; y; kÞ ¼
X2

j¼0

kjHjðx; yÞ þ Oðk3Þ;

pðx; y;0; kÞ ¼
X2

j¼0

kjpjðx; yÞ þ Oðk3Þ; ð1:9Þ

qðx; y;0; kÞ ¼
X2

j¼0

kjqjðx; yÞ þ Oðk3Þ:

Then, we have the following main result.

Theorem 1.1. Let (1.9) hold. Then

(i) M1 in (1.5) has the expression

M1ðhÞ ¼ �
I

L0ðhÞ
H1ðx; yÞ ðp0Þx þ ðq0Þy

h i
dt

þ
I

L0ðhÞ
q1dx� p1dy: ð1:10Þ

(ii) Suppose that there exist a region G and C1 functions
p�ðx; yÞ and q�ðx; yÞ defined on G such that for all
ðx; yÞ 2 G

�H1ðx; yÞ½ðp0Þx þ ðq0Þy� ¼ ðH0Þxp� þ ðH0Þyq�:

Then for M2 in (1.5) we have

M2ðhÞ ¼ �
1
2

I
L0ðhÞ

u1ðx; yÞdt �
I

L0ðhÞ
u2ðx; yÞdt

þ
I

L0ðhÞ
q2dx� p2dy; ð1:11Þ

where L0ðhÞ � G and

u1 ¼ ðH1p�Þx þ ðH1q�Þy;
u2 ¼ H1½ðp1Þx þ ðq1Þy� þ H2½ðp0Þx þ ðq0Þy�:

Consider the polynomial system

_x ¼ �yþ yx2 þ epðx; yÞ;
_y ¼ xþ xy2 þ eqðx; yÞ;

ð1:12Þ

where e is a small parameter, p and q are polynomials
of degree n. Li et al. [4] studied this system by using the
first Melnikov function. When perturbed Eq. (1.12) with

polynomial perturbation of degree n, they found at most
0; 1; 4; 2 nþ1

2

� �
limit cycles for n ¼ 0; n ¼ 1;2; n ¼ 3;4;

n P 5 respectively up to first order in e. Li and Zhao [5]
considered (1.12) and proved that eight limit cycles can
appear for n ¼ 3 by applying the averaging theory of sec-
ond order. In this paper, we obtain more limit cycles for
the system by the above method using M2. In other words,
we have

Theorem 1.2. For n ¼ 3, Eq. (1.12) can have nine limit
cycles, eight of which are near the elementary center (0,0) of
the reversible isochronous system _x ¼ �yþ yx2; _y ¼ xþ xy2.

This paper is organized as follows. In Section 2, we
derive the formulas of M1 and M2, which gives the proof
of Theorem 1.1. In section, we will present the proof of
Theorem 1.2 by using the established method.

2. Proof of Theorem 1.1

To deduce formulas for M1 and M2 in Eq. (1.5), we first
prove the following lemma.

Lemma 2.1. Let

�Mðh; kÞ ¼
I

LkðhÞ
�qdx� �pdy; ð2:1Þ

where �pðx; yÞ and �qðx; yÞ are C1 functions independent of k.
Then

�Mkðh; kÞ ¼ �
I

LkðhÞ
Hkð�px þ �qyÞdt: ð2:2Þ

Proof. Introduce

~qðx; yÞ ¼ �qðx; yÞ þ
Z y

0
�pxðx;vÞdv

which satisfies ~qy ¼ �px þ �qy. Then it follows from (2.1) and
Green’s formula that

�Mðh; kÞ ¼
I

LkðhÞ
~qdx:

Let Aðh; kÞ ¼ ðaðh; kÞ; ~aðh; kÞÞ and Bðh; kÞ ¼ ðbðh; kÞ; ~bðh; kÞÞ
denote the most left and most right points of the orbit LkðhÞ.
For definiteness, we can assume that LkðhÞ has a clockwise
orientation and it can be represented as y ¼ y1ðx;h; kÞ and
y ¼ y2ðx;h; kÞ for aðh; kÞ 6 x 6 bðh; kÞ, where y2ðx;h; kÞ 6 y1

ðx;h; kÞ. See Fig. 2.1.

Fig. 2.1. The periodic orbit LkðhÞ.
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