
Complex tunneling dynamics

Ciann-Dong Yang *

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan

Accepted 25 April 2006

Communicated by Gerardo-Iovane

Abstract

Tunneling dynamics and tunneling trajectories are modeled exactly by complex-extended Hamilton–Jacobi formu-
lation in this paper. It is found that the wave-like properties of tunneling particles, such as reflection, refraction, and
transmission resonance, can be identified and explained in terms of particle’s motion in complex space with the tunnel-
ing time defined as the usual sense of classical time. Following the complex trajectories determined by the complex
Hamilton equations of motion, we can connect classical trajectories smoothly with tunneling trajectories using position
and velocity continuity at the interface of the media, locate the particle’s position at any instant, and find the time spent
by a particle within the potential. A microscopic tunneling model is also developed to explain the probabilistic nature
why a particle with the same incident conditions sometimes transmits the potential and sometimes is reflected from the
potential.
� 2006 Elsevier Ltd. All rights reserved.

1. Quantum motion in complex spacetime

Tunneling is a pure quantum mechanical phenomenon that a particle can cross a barrier with potential V, even if its
total energy E is strictly less than V. Many phenomena related to tunneling are widely observed and applied in many
areas of microscopic science and technology. Nevertheless, the understanding of this phenomenon to date does not
seem complete yet. There are two main challenges existing in the study of tunneling: one is the tunneling time problem
and the other is the connection problem. Time is a simple classical concept but it has no exact quantum mechanical
counterpart, since time enters standard quantum mechanics as a parameter, not as an observable. In the absence of
a widely accepted time operator and of a unifying ‘‘clock principle’’ in the present quantum realm, the definition
and calculation of tunneling time depends on how one sets out to measure it [1,2]. The other critical issue of tunneling
is the connection problem regarding to the construction of the global solution by connecting the local solutions sepa-
rated by the classical turning points at which the WKB solution becomes singular. It was pointed out [3,4] that the tran-
sition to classically inaccessible regions and the connection of dynamically separated classical paths could be realized
only by including complex trajectories.
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There are many semi-classical approaches to tunneling problems [5–7]; it is nevertheless true that all the existing
treatments of quantum tunneling dynamics by classical methods are subjected to various degrees of approximation.
Tunneling dynamics is a manifestation of wave-particle duality, which is originated from the non-classical topology
and geometry of quantum spacetime when projected into our 3 + 1 Euclidean space [8–11]. By using the complex-space
formulation of fractal spacetime [12–15], we demonstrate that the tunneling dynamics can be modeled exactly in the
framework of complex-extended Hamilton mechanics. In this formulation, the definition of tunneling time is as simple
as the usual classical time without the necessity of defining any time operator and the tunneling trajectory can be defined
unambiguously in the complex plane such that the trajectories in classical regions and non-classical regions are con-
nected smoothly.

It is a common belief that quantum mechanics has no dynamic equation of motion, although it has the equation for
the propagation of probability, i.e., the Schrödinger equation. The lack of dynamic equation of motion may be one of
the sources of controversies of quantum mechanics. Complex-extended Hamilton mechanics can resolve this problem
by providing Hamilton equations of motion, which can be used to compute particle’s quantum trajectories that are con-
sistent with the observed quantum behavior. The application of Hamilton mechanics to the electron’s quantum dynam-
ics in hydrogen atom has been considered in [16], where it was found that the quantizations of energy, angular
momentum and the action variable are all originated from the electron’s complex motion governed by quantum Ham-
ilton equations. Based on the derived electron’s trajectory, it was made clear why the electron appears at some positions
with large probability, while at some other positions with small probability.

Particle with energy E moving within a step potential with height V0 > E is classically prohibited, since this would
lead to an imaginary momentum p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � V 0Þ

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV 0 � EÞ

p
within the potential; however, this prohibition is

no longer necessary, if we extend Hamilton mechanics to complex space and allows particle to possess imaginary parts
of position and momentum. We will see in this paper that quantum tunneling is nothing but a classical motion emerged
in complex space, which allows us to treat tunneling problems exactly by using classical Hamilton mechanics extended
to complex space.

Here the position of a tunneling particle is described generally by x = xR + ixI 2 C, with xR 2 R and xI 2 R being the
real and imaginary parts of x, respectively. Analogously, its momentum is described by p = pR + ipI 2 C. This gener-
alization of particle’s motion to complex space does not damage the accepted understanding of tunneling phenomena,
since if the particle’s motion is purely real, we automatically have xI = 0. According to complex-extended Hamilton
mechanics [13–15], the equations of motion of a tunneling particle moving under the action of a potential V(x) is gov-
erned by the following complex quantum Hamiltonian:

Hðx; pÞ ¼ 1

2m
p2 þ V ðxÞ � �h2

2m
d2 ln wðxÞ

dx2
; x; p 2 C: ð1:1Þ

It can be seen that in addition to the first two classical components, the complex Hamiltonian defined in Eq. (1.1) has an
extra component

QðxÞ ¼ � �h2

2m
d2 ln wðxÞ

dx2
; ð1:2Þ

called complex quantum potential, which is the origin of particle’s quantum behavior. The quantum Hamilton equa-
tions derived from Eq. (1.1) read

dx
dt
¼ oH

op
¼ p

m
; xð0Þ ¼ x0 2 C; ð1:3aÞ

dp
dt
¼ � oH

ox
¼ � d

dx
V ðxÞ � �h2

2m
d2 ln wðxÞ

dx2

� �
; pð0Þ ¼ p0 2 C: ð1:3bÞ

Substituting Eq. (1.3a) into Eq. (1.3b) yields the complex Newton’s equation

m
dx2

dt2
¼ � dV

dx
� dQ

dx
; x 2 C: ð1:4Þ

This equation has the form of Newton’s second law in the complex domain, in which the particle is subject to a complex
quantum force �dQ/dx in addition to the classical force �dV/dx. Next, we derive the energy conservation law in com-
plex domain. Treating p as a function of x, we can recast dp/dt into the form

dp
dt
¼ dp

dx
dx
dt
¼ p

m
dp
dx
¼ 1

2m
d

dx
p2: ð1:5Þ
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