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Abstract

This paper demonstrates that there is an exponentially stable unique equilibrium state in a Hopfield-type neural net-
work that is subject to quite large impulses that are not too frequent. The activation functions are assumed to be glob-
ally Lipschitz continuous and unbounded. The analysis exploits an homeomorphic mapping and an appropriate
Lyapunov function, and also either a geometric–arithmetic mean inequality or a Young inequality, to derive a family
of easily verifiable sufficient conditions for convergence to the unique globally stable equilibrium state. These sufficiency
conditions, in the norm kÆkp where p P 1, include those governing the network parameters and the impulse magnitude
and frequency.
� 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Impulses are ubiquitous in both biological and artificial neural networks. For example, peaceful sleep may be sud-
denly interrupted, perhaps by a nightmare. However, even if there are abrupt changes in the neural state, a person may
resume a deeper sleep provided the interruption is not too great nor too frequent. In the case of an artificial network for
signal processing, faulty elements can produce sudden changes in the state voltages and thereby affect the normal tran-
sient behaviour in processing signals or information, and robust system design is important. Neural networks perceived
as either continuous or discrete dynamical systems have been studied extensively, but the mathematical modelling of
dynamical systems with impulses is a quite recent development [1,2,14–16,24–26,31]. In this paper, we demonstrate
the exponential stability of a unique equilibrium state in a Hopfield-type neural network [17] consisting of m processing
units, subjected to impulsive state displacements. Phenomena such as those mentioned above may be interpreted as
large impulses affecting otherwise normal transient behaviour, but conditions for a neural network to resist impulses
of significant magnitude do not appear to have been found before.
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2. Mathematical model

The network is described by

dxiðtÞ
dt
¼ �aixiðtÞ þ

Xm

j¼1

bijfjðxjðtÞÞ þ ci; t > t0; t 6¼ tk ; ð2:1Þ

subject to xðt0Þ ¼ x0 2 Rm; and Dxijt¼tk
¼ xiðtþk Þ � xiðt�k Þ ¼ Ikðxiðt�k ÞÞ; k ¼ 1; 2; 3; . . .

Here xiðtþk Þ � xiðtk þ 0Þ, xiðt�k Þ � xiðtk � 0Þ for i 2 I ¼ f1; 2; . . . ;mg and the sequence of times ftkg1k¼1 satisfies

t0 < t1 < t2 < � � � < tk !1 as k !1 and Dtk ¼ tk � tk�1 P h

for k = 1,2,3, . . ., where the value h > 0 denotes the minimum time of interval between successive impulses. A suffi-
ciently large value of h ensures that impulses do not occur too frequently (see later), but h!1 means that the network
(2.1) becomes impulse free. We refer to Gopalsamy [14] for earlier discussion of this model formulation and its
application.

The vector solution xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xmðtÞÞT 2 Rm of (2.1) has components xi(t) piece-wise continuous on (t0,b)
for some b > t0, such that xðtþk Þ and xðt�k Þ exist and x(t) is differentiable on the open intervals (tk�1, tk) � (t0,b). Further,
we assume that x(t) is right continuous with xðtkÞ ¼ xðtþk Þ; the functions Ik : R! R that characterize the impulsive
jumps are continuous; the neural parameters ai,bij,ci satisfy ai > 0; bij; ci 2 R; and the activation functions
fj : R! R with fj(0) = 0 may be unbounded and continuous but satisfy

jfjðuÞ � fjðvÞj 6 Ljju� vj for all u; v;2 R; ð2:2Þ
jfjðuÞj ! 1 as juj ! 1;

where Lj > 0 for j 2 I denotes a Lipschitz constant.
Sufficiency conditions on the neural parameters and the impulses have previously been obtained to guarantee the

asymptotic convergence towards a unique equilibrium state of the network (2.1), associated with the norms kÆk1,
kÆk2 and kÆk1 [14]. However, the asymptotic stability of this equilibrium state is guaranteed only if the magnitudes
of the impulses are neither large nor frequent. Although that is of course consistent with the view that a dynamical sys-
tem tends to become unstable when subjected to sufficiently frequent impulses of large magnitude [4,22,30], in this paper
a family of easily verifiable sufficient conditions on the neural parameters and the impulses is found to more generally
guarantee the exponential convergence of the neural states towards the unique equilibrium state, and in any norm kÆkp

where p P 1. The results obtained by applying a geometric–arithmetic mean inequality and a Young inequality to an
appropriate Lyapunov function significantly enhance the earlier work, both with and without impulses.

3. Existence and uniqueness theorems

To provide for an associative memory [8,29,34,37], the network architecture is designed to not only store as many
equilibrium states (or memories) as possible, but also to retrieve the relevant stored memory produced by a given exter-
nal stimulus c = (c1,c2, . . . ,cm)T. Thus if a neural network is intended to solve an optimization problem, the circuit
design of the network should ensure that all neural states approach a unique equilibrium state of the network
[6,13,21,23,32]. The association of an equilibrium state with an external input vector c = (c1,c2, . . . ,cm)T avoids the pos-
sibility of convergence towards some local minimum that is a spurious equilibrium state, and not the optimal solution of
the optimization problem.

To ensure that a unique equilibrium state exists, it has been customary to impose restrictions on the neural
parameters and the activation functions of the network, such assuming they are bounded and Lipschitz continuous
[11] – i.e.

gjð0Þ ¼ 0; jgjðuÞj 6 Mj; jgjðuÞ � gjðvÞj 6 Ljju� vj

for some positive constants Mj, Lj and any u; v 2 R. Stronger requirements have been adopted [3,9,10,12,18,20,27,
35,36,39], where the activation functions are assumed to be bounded, continuous, monotonic and differentiable – i.e.
gj 2 C1ðRÞ, g0jðuÞ > 0 for u 2 R, g0jð0Þ ¼ supu2Rg0jðuÞ > 0, gj(0) = 0 and gj(u)! ±1 as u! ±1. Recent applications,
in which the activation functions are either linear and piece-wise continuous or Gaussian, have indicated a number
of advantages for removing the differentiability and monotonicity requirements [19,29,34,37]. And in applying a neural
network to solve a certain class of optimization problems, Forti et al. [13] have used activation functions of exponential-
type and diode-like, which are unbounded to suit the unbounded constraint requirement of the problems considered.
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