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Abstract

Sufficient conditions in the form of linear matrix inequalities for the exponential stability of the equilibrium point for
delayed neural networks with time varying delays are presented. The conditions turn out to be greatly simplified ver-
sions of the exponential stability results previously reported by Yucel and Arik. A distinct feature of the present criteria
is that they are free of the degree of exponential stability. This feature makes the criteria computationally very
attractive.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The stability properties of neural networks have been studied extensively (see [1–46] and the references cited therein).
The present paper deals with the problem of exponential stability of Hopfield-type neural networks with delay, the so-
called delayed neural networks (DNNs). In particular, the exponential stability results given in [31] are revisited. The
greatly simplified versions of the criteria of [31] are presented. The simplification lies in the fact that it is not necessary to
involve s(t) and k, where s(t) denotes the delay and k the degree of exponential stability. The linear matrix inequality
(LMI) feature is retained in the present criteria. Owing to k not being involved, the present criteria turn out to be com-
putationally very attractive.

2. Model descriptions, preliminaries and previous criteria

The DNN model to be considered presently is defined by the following state equations:

dyðtÞ
dt
¼ �AyðtÞ þW0gðyðtÞÞ þW1gðyðt � sðtÞÞÞ þ u; ð1Þ

0960-0779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2005.11.006

* Tel.: +90 312 586 8391; fax: +90 312 586 8091.
E-mail address: vsingh11@rediffmail.com

Chaos, Solitons and Fractals 32 (2007) 609–616

www.elsevier.com/locate/chaos

mailto:vsingh11@rediffmail.com


or

dyiðtÞ
dt
¼ �aiyiðtÞ þ

Xn

j¼1

w0
ijgjðyjðtÞÞ þ

Xn

j¼1

w1
ijgjðyjðt � sðtÞÞÞ þ ui; i ¼ 1; 2; . . . ; n; ð2Þ

where yðtÞ ¼ y1ðtÞ y2ðtÞ � � � ynðtÞ½ �T is the state vector associated with the neurons, A = diag(a1,a2, . . . ,an) is a
positive diagonal matrix (ai > 0, i = 1,2, . . . ,n), W0 ¼ ðw0

ijÞn�n and W1 ¼ ðw1
ijÞn�n are the connection weight and the de-

layed connection weight matrices, respectively, u ¼ u1 u2 � � � un½ �T is a constant external input vector, s(t) is the
transmission delay, the gj, j = 1,2, . . . ,n, are the activation functions, gðyð�ÞÞ ¼ g1ðy1ð�ÞÞ g2ðy2ð�ÞÞ � � � gnðynð�ÞÞ½ �T,
and the superscript T to any vector (or matrix) denotes the transpose of that vector (or matrix). Throughout this paper,
it is understood that s(t) is finite for all t. The activation functions are assumed to satisfy the following restrictions:

0 6
gjðn1Þ � gjðn2Þ

n1 � n2

6 rj; j ¼ 1; 2; . . . ; n ð3Þ

for each n1,n2 2 R, n1 5 n2, where rj are positive constants.
Let y� ¼ y�1 y�2 � � � y�n½ �T be an equilibrium point of system (1). The transformation x(Æ) = y(Æ) � y* puts system

(1) into the following form:

dxðtÞ
dt
¼ �AxðtÞ þW0f ðxðtÞÞ þW1f ðxðt � sðtÞÞÞ; xðtÞ ¼ /ðtÞ; t 2 ½�sðtÞ; 0Þ ð4Þ

or

dxiðtÞ
dt
¼ �aixiðtÞ þ

Xn

j¼1

w0
ijfjðxjðtÞÞ þ

Xn

j¼1

w1
ijfjðxjðt � sðtÞÞÞ; i ¼ 1; 2; . . . ; n; ð5Þ

where xðtÞ ¼ x1ðtÞ x2ðtÞ � � � xnðtÞ½ �T is the state vector of the transformed system, f ðxð�ÞÞ ¼ f1ðx1ð�ÞÞ f2ðx2ð�ÞÞ � � �½
fnðxnð�ÞÞ�T, and fjðxjð�ÞÞ ¼ gjðxjð�Þ þ y�j Þ � gjðy�j Þ, j = 1,2, . . . ,n. Under the restrictions on gj(Æ), the functions fj(Æ) satisfy
the following conditions:

0 6
fjðn1Þ � fjðn2Þ

n1 � n2

6 rj; j ¼ 1; 2; . . . ; n ð6Þ

for each n1,n2 2 R, n1 5 n2.
In the following, B�1 denotes the inverse of a square matrix B and the notation B > 0 (B P 0) means that B is sym-

metric positive definite (positive semidefinite).

Definition 1. Consider the system defined by (4). If there exist a positive constant k > 0 and c(k) > 0 such that

kxðtÞk 6 cðkÞe�kt sup
�sðtÞ6h60

kxðhÞk; 8t > 0; ð7Þ

then the origin of (4) is exponentially stable, where k is called the degree of exponential stability.

In [31], the following results are presented:

Theorem 1. Suppose that in system (4), s(t) satisfies _sðtÞ 6 g < 1. Let R = diag(ri > 0). If the condition (3) is satisfied and

there exist positive definite matrices P and Q, a positive diagonal matrix D, and a positive constant k such that

PAþ AP � 2kP � P � 4kRD� ð1� _sðtÞÞ�1e2ksðtÞPW1Q�1WT
1 P > 0; ð8Þ

2DAR�1 �DW0 �WT
0 D�WT

0 PW0 � 2Q � ð1� _sðtÞÞ�1e2ksðtÞDW1Q�1WT
1 D P 0; ð9Þ

then the origin of system (4) is exponentially stable.

Theorem 2. Suppose that in system (4), s(t) satisfies _sðtÞ 6 g < 1. Let R = diag(ri > 0). If the condition (3) is satisfied and

there exist positive definite matrices P and Q, a positive diagonal matrix D, and a positive constant k such that

PAþ AP � 2kP � P � 4kRD� 2Q � ð1� _sðtÞÞ�1e2ksðtÞPW1RQ�1RWT
1 P > 0; ð10Þ

2DAR�1 �DW0 �WT
0 D�WT

0 PW0 � ð1� _sðtÞÞ�1e2ksðtÞDW1RQ�1RWT
1 D P 0; ð11Þ

then the origin of system (4) is exponentially stable.
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