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a b s t r a c t 

Until recently, network science has focused on the properties of single isolated networks 

that do not interact or depend on other networks. However it has now been recognized 

that many real-networks, such as power grids, transportation systems, and communication 

infrastructures interact and depend on other networks. Here, we will present a review of 

the framework developed in recent years for studying the vulnerability and recovery of 

networks composed of interdependent networks. In interdependent networks, when nodes 

in one network fail, they cause dependent nodes in other networks to also fail. This is also 

the case when some nodes, like for example certain people, play a role in two networks, 

i.e. in a multiplex. Dependency relations may act recursively and can lead to cascades of 

failures concluding in sudden fragmentation of the system. We review the analytical solu- 

tions for the critical threshold and the giant component of a network of n interdependent 

networks. The general theory and behavior of interdependent networks has many novel 

features that are not present in classical network theory. Interdependent networks embed- 

ded in space are significantly more vulnerable compared to non-embedded networks. In 

particular, small localized attacks may lead to cascading failures and catastrophic conse- 

quences. Finally, when recovery of components is possible, global spontaneous recovery 

of the networks and hysteresis phenomena occur. The theory developed for this process 

points to an optimal repairing strategy for a network of networks. Understanding realistic 

effects present in networks of networks is required in order to move towards determining 

system vulnerability. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Classical graph studies involved simple random graphs 

(Erd ̋os–Rényi networks) or regular lattices, however once 

more data became available about real-world complex sys- 

tems, researchers quickly discovered that real networks 

have far more complex structures. First of all, many real 

networks have some nodes that act as hubs with far more 
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connections than other nodes [1–3] . Beyond this, many 

studies have found other non-random structures such as 

the small-world structure [4] , community structure [5,6] , 

clustering [4] , degree–degree correlations [7,8] , and unique 

spatial structures [9] in networks. Understanding the topo- 

logical structure of real-world networks has provided in- 

sights into fields as diverse as epidemiology [10–14] , cli- 

mate [15,16] , economics [17,18] , sociology [19] , infrastruc- 

ture [20] , traffic [21] , physiological networks [22] , and 

brain networks [23,24] . 

One of the most important properties of networks is 

their robustness to failures or in other words what frac- 

tion of nodes remain connected after some other subset 

http://dx.doi.org/10.1016/j.chaos.2016.02.002 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2016.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.02.002&domain=pdf
mailto:lsheks@gmail.com
http://dx.doi.org/10.1016/j.chaos.2016.02.002


L.M. Shekhtman et al. / Chaos, Solitons and Fractals 90 (2016) 28–36 29 

Fig. 1. Modern infrastructure involves many dependency relations as shown in the figure from [44] . 

of nodes is removed? To answer this question it is often 

useful to use percolation theory which tells us what frac- 

tion of nodes are in the largest component, P ∞ 

[25,26] . 

Defining functionality based on the size of the largest com- 

ponent makes sense in many contexts. For example, in 

the case of a communications network it is usually perti- 

nent to ask what fraction of nodes are able to communi- 

cate? If P ∞ 

≈ 1 then the network is functional and most 

nodes can easily communicate. However if P ∞ 

≈ 0 then 

very few nodes can communicate and the network is es- 

sentially non-functional. The term giant connected compo- 

nent is used when P ∞ 

is a non-zero fraction of an infinite 

system. 

The formal framework of percolation theory in the 

context of networks involves varying 1 − p, the fraction 

of nodes removed at random and calculating the corre- 

sponding size of the largest component, P ∞ 

( p ). In general, 

for single isolated networks P ∞ 

( p ) undergoes a second- 

order, continuous phase transition [27] as p decreases. The 

point where the transition occurs is typically referred to 

as p c . For p > p c we have P ∞ 

( p ) > 0, but for p < p c , 

P ∞ 

(p) = 0 . For Erd ̋os–Rényi networks it was found that 

p c = 1 / 〈 k 〉 where 〈 k 〉 is the mean degree of the network 

[28–30] . In contrast, for scale-free networks where the de- 

gree distribution follows p(k ) ∼ k −λ, it was found that for 

λ < 3, p c = 0 [31] , indicating that only when essentially 

all nodes are removed does the giant component reach 

zero. 

Most real networks do not operate in isolation, but 

are instead merely one system in a network of networks 

[32–38] . One type of important relationship between net- 

works is interdependence [39,40] . This occurs in infrastruc- 

ture where power grids may depend on communications 

systems and in many biological systems where functional- 

ity requires numerous organs and metabolic pathways to 

work together. Another example occurs in sociology where 

an individual may participate in multiple social networks 

[41–43] . We show an example of the complexity of inter- 

dependence in modern infrastructure in Fig. 1 . Here, we 

will review some of our recent results on interdependent 

networks and point readers to other articles where they 

can learn more about the subject. 

In interdependent networks there are two types of 

links, the usual connectivity links that are also present in 

single networks, as well as a new type of links called de- 

pendency links [39,40,45–49] . These dependency links im- 

ply that the node at one end of the link relies on the node 

at the other end of the link to function. Thus if the node 

on one end of a dependency link fails, then the node on 

the other end will also fail. 

The structure of the network of networks is based on 

networks having dependency links between them. Pos- 

sible structures are shown in Fig. 2 and include tree- 

like structures, a loop, and a random-regular configuration 

where each networks has the same number of dependency 

relations. 
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