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a b s t r a c t 

By analyzing a large data-base of car-driving data in a generic way, a few elementary facts 

on car-following have been found out. The inferences stem from the application of the 

mutual information to detect correlations to the data. Arguably, the most interesting fact 

is that the acceleration of the following vehicle depends mostly on the speed-difference to 

the lead vehicle. This seems to be a causal relationship, since acceleration follows speed- 

difference with an average delay of 0.5 s. Furthermore, the car-following process organizes 

itself in such a manner that there is a strong relation between speed and distance to the 

vehicle in front. In most cases, this is the dominant relationship in car-following. Addi- 

tionally, acceleration depends only weakly on distance, which may be surprising and is at 

odds to a number of simple models that state an exclusive dependency between accelera- 

tion and distance. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Driving behavior models have become important tools 

in transportation science and engineering applications 

since their first appearance in the 1950s [21] . By now, a lot 

of models that seek to describe human driving behavior, 

i.e. acceleration processes (and lane changing maneuvers) 

have been introduced, see [6,10,15,16] for albeit incomplete 

overviews. The complexity of these models ranges from 

very simple models with few parameters like Newell’s 

lower order model [18] or the cellular automaton model 

[17] up to multi-regime models like Wiedemann’s psycho- 

physical perception threshold model [26] or the model im- 

plemented in the MITSIM-lab [1] open source simulator 

with lots of thresholds and different conditions describing 

an assumptive behavior in specific situations. 

∗ Corresponding author. Tel.: +49 30 67055 237; fax: +49 30 67055 291. 

E-mail addresses: peter.wagner@dlr.de (P. Wagner),

ronald.nippold@dlr.de (R. Nippold), sebastian.gabloner@tum.de (S. 

Gabloner), martin.margreiter@tum.de (M. Margreiter). 

It is commonly believed, that the behavior of a human 

driving a vehicle can be described quite generally by the 

two equations 

v (t + �t) = v (t) + a (�v , g, v )�t (1) 

x (t + �t) = x (t) + 

�t 

2 

( v (t + �t) + v (t) ) (2) 

where ( x ( t ), v ( t )) are the position and speed of the vehicle 

at time t , ( g, �v ) are the distance and speed difference to 

the vehicle in front, and a ( ·) is the acceleration function. 

There is no need for �t to be equi-distant, and in fact the 

so called action-point models [22,26] claim that a driver 

changes her course of action only from time to time, based 

either on external forces or even on no apparent reason 

which may lead to an exponential distribution of the �t - 

values [24] . 

Since a lot of empirical research has been done on this 

topic, too, only occasionally approaches have been made 

to connect empirics and models in a physicist’s manner. A 

course of action that is often pursued in driver modeling 
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is to do calibration and validation [8] of known models. 

By their very nature, these exercises often yield reasonable 

results (of the order of 10–20% root-mean-square error [4] ) 

even for models that are known to be a bad description of 

driving, like e. g. the simplest cellular automaton models 

[17] or the optimal velocity model [3] . 

Here, a different approach is adopted. A large data-set 

of car driving (collected in the second half of 2012 in 

the German simTD project) is analyzed with the help of 

methods from data science [9] . This research will try to 

look on these data and try to find some general relation- 

ships between the measured data. Within this work, the 

approach is limited to the four variables speed v , accel- 

eration a , distance to the lead vehicle g , and the speed- 

difference �v to the lead vehicle. However, in principle 

it is also possible to include other parameters that might 

influence driving behavior, such as the time of day when 

the driver is driving, the street-type, the weather condi- 

tions, or the acceleration of the lead vehicle which might 

be accessible to the driver by observing the lead vehi- 

cle’s braking lights. Finally, this approach here can find a 

few general features of the function a ( g, �v, v ) in Eq. (1) 

above. 

The present paper consists of four parts: A descrip- 

tion of the data set under consideration is contained in 

Section 2 . The following Section 3 gives an overview of the 

statistical measures maximal information content (MIC) 

and mutual information ( M ) used in this paper, and states 

the main results. Finally, the conclusions of this analysis 

are presented in Section 4 . 

2. Description of the simTD data 

The data to be used here have been recorded during the 

field test of the simTD project from July 2012 to December 

2012. Altogether 120 vehicles where driving around for 98 

days. Different drivers were assigned to the vehicles, but 

this assignment is kept confidential and therefore not part 

of the data-set. Because of the main goal of the project, to 

estimate the efficiency of vehicle-to-vehicle and vehicle-to- 

infrastructure communication, the vehicles drove on pre- 

defined routes only, thereby covering an area of roughly 

15 × 45 km around the German city of Frankfurt. 

All the data were made available by the six partici- 

pating German car manufacturers via the CAN-bus in a 

frequency between 200 Hz and 0.5 Hz. To abstract the 

manufacturer-specific protocols, all the data were extracted 

from the internal network of the car (the CAN-bus) by a 

specialized VehicleAPI (VAPI) which was especially devel- 

oped within this project. Therefore, all data were available 

in the same generic format for the project. All the sig- 

nals from the CAN-bus where synchronized using the GPS 

time. 

The data used in this paper have been recorded by four 

sensors, that were built into the vehicles: a GPS sensor, 

an acceleration sensor that was aligned with the car’s 

geometry and therefore allowed the measurement of the 

longitudinal (in driving direction) and lateral acceleration 

(perpendicular to the driving direction), the distance and 

velocity difference to the lead vehicle by a radar/lidar 

sensor, and the speed from the traditional wheel sensors. 

The acceleration data was noisy, but not in an unreason- 

able manner, so it was decided to use them unfiltered 

as they are. This does not rule out, that the internal 

machinery within the cars itself does some filtering, but 

from what have been seen by visual inspection, this does 

not seem very likely. 

Within this project, the GPS data have been enhanced 

into a differential GPS by correction signals received over 

UMTS and ITS-G5 (802.11p). These data have been matched 

on an underlying digital road network, but this has not 

been used in this paper but was used in the communi- 

cation part of the projects. All the cars were normal cars 

(with all the sensors) that can be bought in exactly this 

form, only the data-acquisition had been added within the 

project. 

The data were recorded asynchronously. That means, 

that the variables to be analyzed here (distance g , speed 

v , speed-difference �v , and acceleration a ) are recorded 

in their raw format not at the same time, and the time- 

difference between subsequent readings even of the same 

sensor is not guaranteed to be equidistant. The variables 

are acquired by three different sensors: a radar sensor 

which measures the distance and speed-difference to the 

vehicle in front (sometimes it also picks a tree at the bor- 

der of the road), the vehicle’s internal measurement of the 

speed, and the acceleration which is recorded by a dedi- 

cated sensor. 

As explained above, the current position of the vehi- 

cle is measured by a GPS receiver. Note, that the GPS pro- 

vides an additional measurement of the speed which has 

not been utilized here. Also, it could have been used to 

determine the acceleration of the vehicle, which also has 

not been done here for the analysis below systematically. 

A brief view into this, however, reveals that the data ob- 

tained from GPS are in good agreement with the record- 

ings to be used in the following. 

The typical frequency with which the data are recorded 

is about 10 Hz. Therefore, it was decided to force the data 

into a common time-basis by aggregating them to 0.1 s. 

This worked well, in most cases less than 4 data-points fall 

into one time-bin, which is then averaged to get the time- 

series that will be analyzed subsequently. 

It is safe to assume that the data are not error-free. 

From visual inspection of the data, it turns out that there 

are a lot of points where the data-stream disconnects, i.e. 

there are gaps in time which are larger than 0.1 or 0.2 s, 

where no values are recorded. To transform this into a 

measure of data-quality, the one-step ahead prediction er- 

ror is used in the following. This error can be computed 

from estimates of the gap and speed of the subject vehicle 

for the next step in time, which is given by: 

ˆ g k = g k −1 + �v k −1 (t k − t k −1 ) , (3) 

ˆ v k = v k −1 + a k (t k − t k −1 ) . (4) 

This is compared with the actual measurements at the 

time-point k + 1 , thereby defining a measure of consis- 

tency of the time-series: 

e (g) 
k 

= 

ˆ g k − g k , (5) 

e (v ) 
k 

= 

ˆ v k − v k . (6) 
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